GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Enological characterization of mold resistant varieties grown in the Trentino Alpine Region

Enological characterization of mold resistant varieties grown in the Trentino Alpine Region

Abstract

Among the different strategies used in vine growing to fight against mold diseases, it can be pointed out the hybridation of traditional grape varieties with others, presenting a genetic resistance to pathogen attack. The research in this field has been encouraged in recent years due to the increased concern about human safety and environmental pollution linked to the use of agrochemicals. This approach allows to limit the number of treatments and the type of active compounds used in vine management. The environment determines the pressure degree of the diseases on vines and the biologic response of the plant to their attack. Thus, to better evaluate the tolerance to pathogens, cultivars are usually tested in different vinegrowing areas and the main winemaking parameters – such as reducing sugars, organic acids or pH – are evaluated. However, the plant environment also affects greatly the production of secondary metabolites, some of which play an active role in wine quality, determining the enological aptitude of these varieties in each production area. Information regarding the composition of these compounds is scarce and should be related to the production area and the viticultural and agronomic features.

Material and methods – Grapes used for the winemaking investigations were produced between 2015 and 2017 in two experimental plots of Trentino (NE Italy) geographically and environmentally differentiated.

Results – In this work, we report some of the results obtained in the VEVIR project, which regards the evaluation and the enological valorization of grapes produced in the Trentino vinegrowing region from some mold resistant varieties breeded at the Weinbauinstitute from Freiburg (Germany). To this aim, musts, wines and distillates obtained with standardized conditions at semi-industrial scale were used for the chemical investigations. The project focused partially on the study of the phenolic and the color profile of wines obtained from red varieties, the shikimic acid concentration from white cultivars or the aroma of the wines and the distillates analyzed chemically and sensorially. We have also deepen on the effect of the winemaking protocol on the concentration of some of these parameters in wines.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Tomas ROMAN*, Sergio MOSER, Laura BARP, Maurizio BOTTURA, Loris TONIDANDEL, Mario MALACARNE, Roberto LARCHER and Giorgio NICOLINI

Center for Technology Transfer – Fondazione Edmund Mach, San Michele all’Adige (TN), Italy

Contact the author

Keywords

mold, tollerant, resistant, winemaking, aroma, secondary metabolites

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Pruned vine biomass exclusion from a clay loam vineyard soil – examining the impact on physical/chemical properties

The wine industry worldwide faces increasing challenges to achieve sustainable levels of carbon emission mitigation. This project seeks to establish the feasibility of harvesting winter pruned vineyard biomass (PVB) for potential use in carbon footprint reduction, through its use as a renewable biofuel for energy production. In order to make this recommendation, technical issues such as the potential environmental impact, chemical composition and fuel suitability, and logistical challenges of harvesting biomass needs to be understood to compare with the results from similar studies. Of particular interest is the role PVB plays as a carbon source in vineyard soils and what effect annual removal might have on soil carbon sequestration. A preliminary trial was established in the Waite Campus vineyard (University of Adelaide) to test current management strategies. Vines are grown in a Eutrophic, Red Dermosol clay loam soil with well managed midrow swards. A comparison was undertaken of mid-row treatments in two 0.25 Ha blocks (Shiraz and Semillon), including annual cultivation for seed bed preparation, the deliberate exclusion of PVB (25 years) and incorporation of PVB (13 years) at an average of 3.4 and 5.5 Mg/Ha-1 for Shiraz and Semillon respectively. In both 0-10cm and 10-30cm soil core sample depths, combined soil carbon % measures in the desired range of 1.80 to 3.50, were not significantly different between treatments or cultivars and yielded an estimated 42 Mg/ha-1 of sequestered soil carbon. Other key physical and chemical measures were likewise not significantly different between treatments. Preliminary results suggest that in a temperate zone vineyard, managed such as the one used in this study, there is no long term negative impact on soil carbon sequestration through removing PVB. This implies that growers could confidently harvest PVB for use in several end fates including as a bio fuel.

Genetic study of wild grapevines in La Rioja region

Since the mid-1980s, several surveys have been carried out in La Rioja to search for populations of the sylvestris grapevine subspecies (Vitis vinifera L. subsp. sylvestris Gmelin). The banks of the Ebro River and its tributaries (Alhama, Cidacos, Leza, Iregua, Najerilla, Oja and Tirón rivers), as well as the surrounding vegetation of their valleys have been covered. So far, all the populations found are alluvial, forming part of the riparian vegetation of the Najerilla (the first reported population in La Rioja [1]), Iregua, and the vicinity of Oja valleys.

All acids are equal, but some acids are more equal than others: (bio)acidification of wines

Insufficient acidity in grapes from warm(ing) climates is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. One alternative approach involves bio-acidification with certain strains of Lachancea thermotolerans (LT) via lactic acid production during fermentation.

Climate change and economic challenge – strategies for vinegrowers, winemakers and wine estates

For wine areas around the world, nature and climate are becoming factors of production whose endowment becomes a stake beyond the traditional economic factors: labor, capital, land. They strongly influence agricultural and environmental conditions for production.

The temperature‐based grapevine sugar ripeness (GSR) model for adapting a wide range of Vitis vinifera L. cultivars in a changing climate

 Temperatures are increasing due to climate change leading to advances in grapevine phenology and sugar accumulation in grape berries.