GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Enological characterization of mold resistant varieties grown in the Trentino Alpine Region

Enological characterization of mold resistant varieties grown in the Trentino Alpine Region

Abstract

Among the different strategies used in vine growing to fight against mold diseases, it can be pointed out the hybridation of traditional grape varieties with others, presenting a genetic resistance to pathogen attack. The research in this field has been encouraged in recent years due to the increased concern about human safety and environmental pollution linked to the use of agrochemicals. This approach allows to limit the number of treatments and the type of active compounds used in vine management. The environment determines the pressure degree of the diseases on vines and the biologic response of the plant to their attack. Thus, to better evaluate the tolerance to pathogens, cultivars are usually tested in different vinegrowing areas and the main winemaking parameters – such as reducing sugars, organic acids or pH – are evaluated. However, the plant environment also affects greatly the production of secondary metabolites, some of which play an active role in wine quality, determining the enological aptitude of these varieties in each production area. Information regarding the composition of these compounds is scarce and should be related to the production area and the viticultural and agronomic features.

Material and methods – Grapes used for the winemaking investigations were produced between 2015 and 2017 in two experimental plots of Trentino (NE Italy) geographically and environmentally differentiated.

Results – In this work, we report some of the results obtained in the VEVIR project, which regards the evaluation and the enological valorization of grapes produced in the Trentino vinegrowing region from some mold resistant varieties breeded at the Weinbauinstitute from Freiburg (Germany). To this aim, musts, wines and distillates obtained with standardized conditions at semi-industrial scale were used for the chemical investigations. The project focused partially on the study of the phenolic and the color profile of wines obtained from red varieties, the shikimic acid concentration from white cultivars or the aroma of the wines and the distillates analyzed chemically and sensorially. We have also deepen on the effect of the winemaking protocol on the concentration of some of these parameters in wines.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Tomas ROMAN*, Sergio MOSER, Laura BARP, Maurizio BOTTURA, Loris TONIDANDEL, Mario MALACARNE, Roberto LARCHER and Giorgio NICOLINI

Center for Technology Transfer – Fondazione Edmund Mach, San Michele all’Adige (TN), Italy

Contact the author

Keywords

mold, tollerant, resistant, winemaking, aroma, secondary metabolites

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effect of rootstock and preplant fumigation on plant parasitic nematode development in Washington wine grapes

In Washington State, the majority of winegrape (Vitis vinifera) vineyards are planted to their own roots. This practice is possible due to the lack of established phylloxera populations, and is preferred due to the ease of retraining after damaging winter cold events. However, own-rooted V. vinifera is generally susceptible to most plant parasitic nematodes that attack grape. In Washington State, management of nematodes is dominated by preplant soil fumigation. One practice that may mitigate economic loss due to nematodes is the adoption of nematode-“resistant” rootstocks.

Exploring the resistance of non-Saccharomyces wine yeasts to dehydration-rehydration processes

AIM: The use of non-Saccharomyces (NS) yeasts in multi-starter fermentations with S. cerevisiae is a trend in the wine industry, but the number of strains commercially available in a powder formulation, such as active dry yeasts (ADY), is still limited.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

Given that climate change is a continuous process, it is necessary to constantly search for new strategies that help the viticulturist sector to mitigate its consequences. All adaptation strategies will have a greater or lesser effect that in turn will be marked by the times of action. As a long-term action, a genetic breeding program to obtain new varieties descendant from Monastrell has been developed in the Region of Murcia (more specifically, in the IMIDA Research Center) since 1997. In this program, new red varieties have been developed through directed crosses of the Monastrell variety with other varieties such as Cabernet Sauvignon, Tempranillo and Syrah.

Effect of soil particle size on vine water status, leaf abscisic acid content and berry quality in nebbiolo grapes

AIM: We investigated the effect of soil texture on grapevine response to water stress, leaf abscisic acid concentration and berry quality, in two adjacent vineyards located in the renewed Cannubi hill of Barolo (Langhe area, CN, North-West Italy).