GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The grapesim model: a model to better understand the complex interactions between carbon and nitrogen cycles in grapevines

The grapesim model: a model to better understand the complex interactions between carbon and nitrogen cycles in grapevines

Abstract

Context and purpose of the study – Nitrogen fertilization is an important practice to guarantee vineyards sustainability and performance over years, while ensuring berry quality. However, achieving a precise nitrogen fertilization to meet specific objectives of production is difficult. There is a lack of knowledge on the impact of nitrogen fertilizers (soil/foliar; organic/mineral) and different levels of fertilization on the interactions between carbon and nitrogen cycles within the vine. Crop models may be useful in that purpose because they can provide new insights of the effects of fertilization in carbon and nitrogen storage. The objective of this study is to build a model to simulate grapevine carbon and nitrogen content in vines to evaluate the impact of different fertilization strategies in vine growth and yield.

Material and methods – The model GrapeSim has been designed to simulate dynamics of carbon and nitrogen content in organs over multiple years. The model runs at a daily time-step and it decomposes the plant in several compartments; Leaf, Berry, Shoot (annual), Perennial organs (trunk and roots) and Storage. Carbon production is based on the radiation use efficiency approach and carbon is allocated to organs according to their growth demand. When carbon production surpasses organ demand, the remaining carbon is stored in the storage compartment, otherwise, carbon is remobilized from the storage to satisfy organs demand. Nitrogen fluxes are simulated analogously to carbon fluxes by considering a nitrogen demand to reach a specific concentration in each organ. GrapeSim has been calibrated using organ growth trajectories obtained from a pot experiment using ‘Sauvignon Blanc’ grafted onto ‘SO4’.

Results – GrapeSim provided an estimation of the carbon and nitrogen content in storage and their response to nitrogen fertilization, which is quite difficult to measure under field conditions. Several types and amounts of nitrogen were applied to evaluate the effect of nitrogen availability on plant growth, photosynthesis and yield and to validate specific outputs of the model. This work is an example of the relevance of combining field research with crop modelling to have a better understanding of vine responses to horticultural practices such as nitrogen fertilization.
Within the “NV2” project (that brings together 4 private companies, 1 technical institute and 3 public institutes), the next step will be to understand how nitrogen deficiency can affect subsequent reproductive development (bloom return and fruit set) using GrapeSim.

DOI:

Publication date: September 15, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Carole BECEL1*, Rami ALBASHA1, Jérôme CHOPARD1, Damien Fumey1, Anaïs GUAUS1, Davide TARSITANO1, Gerardo LOPEZ1, Aurélie METAY2, Anne PELLEGRINO3

1 ITK, 9 Avenue de l’Europe, F-34830 Clapiers, France
2 UMR SYSTEM, 2 Place Viala, F-34060 Montpellier, France
3 UMR LEPSE, 2 Place Viala, F-34060 Montpellier, France

Contact the author

Keywords

grapevine, carbon, nitrogen, growth, yield, fertilization, model

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Towards a regional mapping of vine water status based on crowdsourcing observations

Monitoring vine water status is a major challenge for vineyard management because it influences both yield and harvest quality. It is also a challenge at the territorial scale for identifying periods of high water restriction or zones regularly impacted by water stress. This information is of major importance for defining collective strategies, anticipating harvest logistic or applying for irrigation authorisation. At this spatial scale, existing tools and methods for monitoring vine water status are few and often require strong assumptions (e.g. water balance model). This paper proposes to consider a collaborative collection of observations by winegrowers and wine industry stakeholders (crowdsourcing) as an interesting alternative. Indeed, it allows the collection of a large number of field observations while pooling the collection effort. However, the feasibility of such a project and its interest in monitoring vine water status at regional scale has never been tested.

The objective of this article is to explore the possibility of making a regional map of vine water status based on crowdsourcing observations. It is based on the study of the free mobile application ApeX-Vigne, which allows the collection of observations about vine shoot growth. This information is easy to collect and can be considered, under certain conditions, as a proxy for vine water status. This article presents the first results obtained from the nearly 18,000 observations collected by winegrowers and wine industry stakeholders during 2019, 2020 and 2021 seasons. It presents the vine shoot growth maps obtained at regional scale and their evolution over the three vintages studied. It also proposes an analysis of the factors that favoured the number of observations collected and those that favoured their quality. These results open up new perspectives for monitoring vine water status at a regional scale but above they provide references for other crowdsourcing projects in viticulture.

Determination of target compounds in cava quality using liquid chromatography. Application of chemometric tools in data analysis

According to the Protected Designation of Origin (PDO), Cava is protected in the quality sparkling wines made by the traditional Champenoise method were the wine realize a second fermentation inside the own bottle1. Geographical and human peculiarities of each bottle are the main way for the final quality2. The aim of this study is to find correlations and which target compounds are the most representative of the quality of two different grape varieties, Pinot Noir and Xarel·lo. The quality of these two types of grapes is being studied for each variety by a previous classification of the vineyard made by the company who provided the samples (qualities A,B,C,D, being A the better one and D the worst one). The target compounds studied are organic acids and polyphenols. The methodology for the determination of organic acids is HPLC-UV/vis and for some of them the enzymatic methodology.

Marketing terroir wines

The markets for quality wine are becoming more competitive as newer producers emerge and traditional producers improve their quality. The concept of terroir is one way to differenzi­ate wines in a competitive market and to enhance producer income.

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

The impact of delayed grapevine budbreak on lemberger wine sensory compounds under variable weather conditions

Spring freeze events threaten grape production globally. As grape buds emerge from dormancy in spring, freezing temperatures have the potential to damage green tissues, decreasing yield potential and compromising fruit quality by harvest.