GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Statewide relationships between water potentials, gas exchange and δ13c of grape musts in California. Implications for use in precision viticulture

Statewide relationships between water potentials, gas exchange and δ13c of grape musts in California. Implications for use in precision viticulture

Abstract

Context and purpose of the study– The measurement of carbon isotopic discrimination of musts (δ13C) at harvest is an integrated assessment of water status during ripening of grapevine. It is an alternative to traditional measurements of water status in the field, which is crucial for understanding spatial variability of plant physiology at the vineyard scale, proven useful for delineation of management zones in precision viticulture. The aim of this work was to attune the method for the first time to California conditions across a range of areas and cultivars with different hydric behavior, and to evaluate its efficiency in delineating management zones for selective harvest in commercial vineyards.
Material and methods – The experiment was performed in 91 experimental units located at four different locations across the State, planted to three different table and wine grape cultivars (Crimson Seedless, Cabernet Sauvignon, Merlot) whose hydric behavior ranged from isohydric to anisohydric, and in between. Leaf gas-exchanges and stem water potentials (Ψ) were measured routinely in each experimental unit, and the δ13C at harvest. At one of the locations, δ13C and water potentials were measured on an equi-distant grid, spatialized and clustered to compare their efficiency in the differentiated the vineyard block into two distinct zones having grapes with different flavonoid composition.
Results – A significant and direct relationship was evident between δ13C and average stem water potential (R2 = 0.72), stomatal conductance (R2 = 0.66) and net carbon assimilation (R2 = 0.62) measured throughout the season. Differences between the cultivars were small, independently from their reported hydric behavior and it was possible to pool all of them together. This was also true in crossed relationships between stem water potential, stomatal conductance, and net carbon assimilation that were not able to clearly discriminate between the reported hydric behaviors. A unique state-wide calibration was therefore developed between δ13C and plant water status. Simulation exercise demonstrated that variability in slope and R2 of the δ13C ~ Ψ regression can be caused by comparison of discrete measurements (Ψ) of water status to a continuous measurement (δ13C), and that apparent variability decreased with increasing sampling points of the discrete measurement (Ψ).The use of δ13C was then tested in a precision viticulture context. The management zones obtained by δ13C and stem water potentials were similar at 72% and allowed to separate the harvest in two pools, having statistically different grape composition (soluble solids, organic acids and anthocyanin profiles). Our results provided evidence that δ13C discrimination was a reliable and repeatable assessor of plant water status in vineyard ecosystems useful for delineation of management zones in precision viticulture.

DOI:

Publication date: September 18, 2023

Issue: GIESCO 2019

Type: Poster

Authors

Luca BRILLANTE1*, Runze YU2, Johann MARTINEZ-LUSCHER2, S. Kaan KURTURAL2

1 Dep. of Viticulture and Enology, California State University, Fresno, CA 93740. USA

2 Department of Viticulture and Enology, University of California, Davis, CA 95616, USA

Keywords

grapevine, δ13C, carbon stable isotopes, water status, leaf gas-exchange, precision agriculture, selective harvest

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Evaluation of mannoprotein formation by different yeast strains by enzymatic analysis of mannose and tribological estimation of astringency

A positive role of mannoproteins on wine stability and red wine mouth sensations has been widely described. Commercial mannoproteins are available and some yeast strains are offered with a higher formation of mannoproteins.

Manipulating grapevine bud fruitfulness

Bud fruitfulness is a key component of reproductive performance of grapevine. It plays a significant role in annual yield variation of vineyards as it is a prerequisite of crop production in the following season. Various exogenous and endogenous factors influencing the development of inflorescence primordia (IP) have been studied. However, the research on molecular genetic control of bud fruitfulness, especially how it interacts with environmental factors is still lacking. This study aims to investigate the molecular mechanism of effects of temperature and light on grapevine bud fruitfulness during initiation and differentiation of IP.

Wood from barrique: release of phenolic compounds and permeability to oxygen

Chemical and sensory changes occurring in red wine during ageing in oak barrique are due to the slow and gradual entrance of oxygen along with a release of ellagic tannin from the wood. Though oxygen can enter the cask through the bunghole, it is not clear the role of permeation through the wood staves as well as the amount of oxygen entering by permeation. The distribution of the released ellagic tannins in the wine ageing is also unknown. The oxygen passing through the bunghole may have a different wine ageing effect compared to the oxygen permeating through the wooden staves owing to the uneven ellagic tannin concentration throughout the wine.

Viticultural parameters and enological performance of six Merlot clones in two contrasting vintages

Vitis vinifera L. and other Vitis have high genetic variations for cultivars or varieties. Many countries carried out strong efforts creating new clones of varieties, mainly focusing on plants free of viruses and other grapevine diseases, but also on different agronomical and enological characteristics of the plants. The aim of this study was to evaluate six clones of Merlot in the traditional viticulture of southeastern Brazil, focusing on distinct characteristics of yield, enological potential of grapes and wine typicality, in order to improve wine quality.