GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Statewide relationships between water potentials, gas exchange and δ13c of grape musts in California. Implications for use in precision viticulture

Statewide relationships between water potentials, gas exchange and δ13c of grape musts in California. Implications for use in precision viticulture

Abstract

Context and purpose of the study– The measurement of carbon isotopic discrimination of musts (δ13C) at harvest is an integrated assessment of water status during ripening of grapevine. It is an alternative to traditional measurements of water status in the field, which is crucial for understanding spatial variability of plant physiology at the vineyard scale, proven useful for delineation of management zones in precision viticulture. The aim of this work was to attune the method for the first time to California conditions across a range of areas and cultivars with different hydric behavior, and to evaluate its efficiency in delineating management zones for selective harvest in commercial vineyards.
Material and methods – The experiment was performed in 91 experimental units located at four different locations across the State, planted to three different table and wine grape cultivars (Crimson Seedless, Cabernet Sauvignon, Merlot) whose hydric behavior ranged from isohydric to anisohydric, and in between. Leaf gas-exchanges and stem water potentials (Ψ) were measured routinely in each experimental unit, and the δ13C at harvest. At one of the locations, δ13C and water potentials were measured on an equi-distant grid, spatialized and clustered to compare their efficiency in the differentiated the vineyard block into two distinct zones having grapes with different flavonoid composition.
Results – A significant and direct relationship was evident between δ13C and average stem water potential (R2 = 0.72), stomatal conductance (R2 = 0.66) and net carbon assimilation (R2 = 0.62) measured throughout the season. Differences between the cultivars were small, independently from their reported hydric behavior and it was possible to pool all of them together. This was also true in crossed relationships between stem water potential, stomatal conductance, and net carbon assimilation that were not able to clearly discriminate between the reported hydric behaviors. A unique state-wide calibration was therefore developed between δ13C and plant water status. Simulation exercise demonstrated that variability in slope and R2 of the δ13C ~ Ψ regression can be caused by comparison of discrete measurements (Ψ) of water status to a continuous measurement (δ13C), and that apparent variability decreased with increasing sampling points of the discrete measurement (Ψ).The use of δ13C was then tested in a precision viticulture context. The management zones obtained by δ13C and stem water potentials were similar at 72% and allowed to separate the harvest in two pools, having statistically different grape composition (soluble solids, organic acids and anthocyanin profiles). Our results provided evidence that δ13C discrimination was a reliable and repeatable assessor of plant water status in vineyard ecosystems useful for delineation of management zones in precision viticulture.

DOI:

Publication date: September 18, 2023

Issue: GIESCO 2019

Type: Poster

Authors

Luca BRILLANTE1*, Runze YU2, Johann MARTINEZ-LUSCHER2, S. Kaan KURTURAL2

1 Dep. of Viticulture and Enology, California State University, Fresno, CA 93740. USA

2 Department of Viticulture and Enology, University of California, Davis, CA 95616, USA

Keywords

grapevine, δ13C, carbon stable isotopes, water status, leaf gas-exchange, precision agriculture, selective harvest

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Genomic perspective of Lachancea thermotolerans in wine bioacidification

We have sequenced two commercial strains of Lachancea thermotolerans (Lt) from the company Lallemand: Laktia™ y Blizz™.

Grapevine vigour is correlated with N-mineralization potential of soil from selected cool climate vineyards in Victoria, Australia

Excess vigour has been a problem on fertile soils under high rainfall in many cool climate regions of Australia. High and low vigour blocks were selected in vineyards of the cool climate regions of King Valley, Yarra Valley and Mornington Peninsula, Victoria.

Influence of weather and climatic conditions on the viticultural production in Croatia

The research includes an analysis of the impact of weather conditions on phenological development of the vine and grape quality, through monitoring of four experimental cultivars (Chardonnay, Graševina, Merlot and Plavac mali) over two production years. In each experimental vineyard, which were evenly distributed throughout the regions of Slavonia and The Croatian Danube, Croatian Uplands,

Investigation of the biostimulant activity of naringenin on anthocyanins biosynthesis: from an explanatory transcriptomic approach on Gamay callus towards a future vineyard application

Context and purpose of the study. Anthocyanins are essential phenolic compounds in red wine, contributing significantly to colour intensity, stability, and sensory quality.

Impact of dosage sugar-type and ageing on finished sparkling wine composition and development of Maillard reaction-associated compounds

The Maillard reaction (MR) is a non-enzymatic reaction between reducing sugars and amino acids, resulting in the production of volatile and flavour-active compounds.