GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Statewide relationships between water potentials, gas exchange and δ13c of grape musts in California. Implications for use in precision viticulture

Statewide relationships between water potentials, gas exchange and δ13c of grape musts in California. Implications for use in precision viticulture

Abstract

Context and purpose of the study– The measurement of carbon isotopic discrimination of musts (δ13C) at harvest is an integrated assessment of water status during ripening of grapevine. It is an alternative to traditional measurements of water status in the field, which is crucial for understanding spatial variability of plant physiology at the vineyard scale, proven useful for delineation of management zones in precision viticulture. The aim of this work was to attune the method for the first time to California conditions across a range of areas and cultivars with different hydric behavior, and to evaluate its efficiency in delineating management zones for selective harvest in commercial vineyards.
Material and methods – The experiment was performed in 91 experimental units located at four different locations across the State, planted to three different table and wine grape cultivars (Crimson Seedless, Cabernet Sauvignon, Merlot) whose hydric behavior ranged from isohydric to anisohydric, and in between. Leaf gas-exchanges and stem water potentials (Ψ) were measured routinely in each experimental unit, and the δ13C at harvest. At one of the locations, δ13C and water potentials were measured on an equi-distant grid, spatialized and clustered to compare their efficiency in the differentiated the vineyard block into two distinct zones having grapes with different flavonoid composition.
Results – A significant and direct relationship was evident between δ13C and average stem water potential (R2 = 0.72), stomatal conductance (R2 = 0.66) and net carbon assimilation (R2 = 0.62) measured throughout the season. Differences between the cultivars were small, independently from their reported hydric behavior and it was possible to pool all of them together. This was also true in crossed relationships between stem water potential, stomatal conductance, and net carbon assimilation that were not able to clearly discriminate between the reported hydric behaviors. A unique state-wide calibration was therefore developed between δ13C and plant water status. Simulation exercise demonstrated that variability in slope and R2 of the δ13C ~ Ψ regression can be caused by comparison of discrete measurements (Ψ) of water status to a continuous measurement (δ13C), and that apparent variability decreased with increasing sampling points of the discrete measurement (Ψ).The use of δ13C was then tested in a precision viticulture context. The management zones obtained by δ13C and stem water potentials were similar at 72% and allowed to separate the harvest in two pools, having statistically different grape composition (soluble solids, organic acids and anthocyanin profiles). Our results provided evidence that δ13C discrimination was a reliable and repeatable assessor of plant water status in vineyard ecosystems useful for delineation of management zones in precision viticulture.

DOI:

Publication date: September 18, 2023

Issue: GIESCO 2019

Type: Poster

Authors

Luca BRILLANTE1*, Runze YU2, Johann MARTINEZ-LUSCHER2, S. Kaan KURTURAL2

1 Dep. of Viticulture and Enology, California State University, Fresno, CA 93740. USA

2 Department of Viticulture and Enology, University of California, Davis, CA 95616, USA

Keywords

grapevine, δ13C, carbon stable isotopes, water status, leaf gas-exchange, precision agriculture, selective harvest

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Early detection project – make a GTD infection visible without disease symptoms

The presence of grapevine trunk diseases (GTDs) related pathogens leads to severe economic losses in wine‐growing regions all over the world

Comparison of fortified, sfursat and passito winemaking techniques for the enhancement of the oenological potential of the black grape cultivar Moscato nero d’Acqui (Vitis vinifera L.)

One of the key factors of the economical development of viticulture and wine industry in specific limited areas is the exploitation of ancient, local grape varieties. Therefore, in recent years the growing interest to rediscover minor varieties, previously cultivated, has promoted many studies. With this regard, the focus of this study was the Vitis vinifera L. cultivar Moscato nero d’Acqui, nowadays found only in old vineyards in the Acqui zone (North-West Italy). In particular, the aims of this work were: i) to investigate secondary metabolites profile of the grapes, and ii) to evaluate the attitude to the production of special wines.

An analysis of wine geographical indications from the perspective of the theory of industrial organizations: what are the trade off?

From Porto and then through Bordeaux, Champagne and Bourgogne, wine geographical indications (gi) were the driving models for this form of protection of distinctive signs for collective use. Many studies present the benefits of recognizing a gi for a given region, the challenges of its implementation, as well as the possibilities of promoting territorial development.

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.

Spotted lanternfly, a new invasive insect in vineyards: is it a threat to grapevines?

The spotted lanternfly (SLF; Lycorma delicatula) is a phloem-feeding polyphagous insect invasive to the Eastern U.S.. Since its first detection in Pennsylvania (U.S.) in 2014, large infestations and economic damage (e.g., decreased yield, vine decline, greater pesticide use) have been reported in an increasing number of vineyards, threatening the sustainability and growth of the wine industry in infested regions. Our team has been investigating the impacts of SLF phloem-feeding on physiological processes, fruit production, juice, and wine composition of different grape cultivars, and also evaluated if the SLF can transmit important grapevine pathogens. In addition, we are working closely with stakeholders to better enumerate the economic damage caused by this pest. These findings will provide relevant information to grape and wine producers to help identify action thresholds and develop a more targeted integrated pest management program.