GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Diffuse light due to wildfire smoke enhances gas exchange of shaded leaves

Diffuse light due to wildfire smoke enhances gas exchange of shaded leaves

Abstract

Context and purpose of the study – The risk of wildfires is increasing as the frequency and severity of drought and heat waves continue to rise. Wildfires are associated with the combustion of plant materials and emit smoke. In the atmosphere, smoke may spread readily across large areas. Smoke is composed of solid and liquid phase particulates and gases and has been identified as a causal agent of “smoke taint” in wine. On a smoky day, the intensity of direct light decreases because these particulates scatter sunlight. Even though this effect is frequently assumed to decrease plant photosynthesis, this assumption ignores the potential changes in diffuse light and may be based on scant evidence. This study compared leaf gas exchange on the sunny and shaded sides of a grapevine canopy during a very smoky, and thus hazy, day.

Material and methods – Five own-rooted Cabernet Sauvignon vines were used in a north-south oriented vineyard row in warm and arid eastern Washington during wildfire events in North America. Vines were drip-irrigated, spur-pruned, and trained to a loose vertical shoot-positioning system. Leaves at a height of 1.5 m were sampled on both sides of the canopy. Leaf temperature, light intensity, stomatal conductance, and gas exchange were measured with a portable infrared gas analyzer on 9 August 2018, in the afternoon about 4:00 PM. The diffuse light was estimated by blocking the direct light to the quantum sensor facing the sun.

Results – Diffuse light accounted for 40% of the incoming light. On the sun-exposed west side of the canopy, the light intensity in the afternoon was 1000 µmol m-2 s-1, while on the east side the light intensity was slightly above 100 µmol m-2 s-1. Leaves on the west-facing side of the canopy were 2°C warmer than leaves on the other side, and the former also had higher photosynthesis and transpiration rates, but leaves on both sides had the same stomatal conductance. Only receiving 10% sunlight, the shaded leaves maintained positive net carbon assimilation and had photosynthesis rates of 25% compared to the fully exposed leaves. While the leaves on the west side transpired at a rate of 7.6 mmol m-2 s-1, their counterparts on the east side maintained a rate of 6.1 mmol m-2 s-1.Therefore, the water use efficiency (WUE) was 27% lower for the east-facing canopy than for the opposite side. These results indicate leaves on the sunny side still received light at saturation level and leaves on the shaded side may provide surplus photosynthates on a smoky day. Further, in a well-watered vineyard, shaded leaves open their stomata once there is enough sunlight for photosynthesis even if the leaves are operating at lower WUE.

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Ben-Min CHANG1, Markus KELLER1*

Washington State University-Irrigated Agriculture Research & Extension Center, 24106 N. Bunn Rd., Prosser, Washington, USA

Contact the author

Keywords

photosynthesis, transpiration, stomata conductance, water use efficiency, light intensity

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).

Evaluation of climate change impacts at the Portuguese Dão terroir over the last decades: observed effects on bioclimatic indices and grapevine phenology

In the last decades the growers of the Portuguese Dão winegrowing region (center of Portugal) are experiencing changes in climate that are influencing either grape phenology berry health and ripening. Aiming to study the relationships between climate indices (CI), seasonal weather and grapevine phenology, in this work long-term climate and phenological data collected at the experimental vineyard of the Portuguese Dão research centre between 1958 and 2019 (61 years) for the red variety Touriga Nacional, was analyzed. The trends over time for the classical temperature-based indices (Growing Season Temperature – GST -, Growing Degree Days – GDD, Huglin Index – HI and Cool Night Index – CI) presented a significantly positive slope while the Dryness Index (DI) showed a negative trend over the last 61 years. Regarding grapevine phenology, an average advance of 4.5 days per decade in the harvest day was observed throughout the last 61 years. Consequently, the weather conditions during the ripening period have changed, showing an increasing trend over time in the average temperature (higher magnitude in the maximum than in the minimum temperature) and a decrease in the accumulated rainfall. A regression analysis showed that ~50% of harvest date variability over years was explained by the temperature-based indices variability. These observed effects of climate change on bioclimatic indices and corresponding anticipation of harvest date can still be considered advantageous for the Dão terroir as it allows to achieve an optimal berry ripening before the common equinox rains and, therefore, avoid the potential negative impacts of the rainfall on berry health and composition.

Simultaneous determination of ethanol and methanol in wines using FTIR and PLS regression

Wine is a complex hydroalcoholic solution, with ethanol levels serving as a critical quality parameter.

Relationships between the Fregoni bioclimatic index (IF) and wine quality

The Fregoni bioclimatic index (IF) considers the daily temperature range during the ripening month and the number of days with temperature below 10°C.

Characterization of varieties named ‘Caiño’ cultivated from Northwest of Spain

The ‘Caiño’ cultivar was cultivated in Galicia (Northwestern Spain) before the invasion of grape phylloxera. Genetic diversity from this cultivar have been described and considered as originating in Galicia, ‘Caiño Tinto’, ‘Caiño Bravo’, ‘Caiño Redondo’, ‘Caiño Longo’ and ‘Caiño Blanco’.