GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Diffuse light due to wildfire smoke enhances gas exchange of shaded leaves

Diffuse light due to wildfire smoke enhances gas exchange of shaded leaves

Abstract

Context and purpose of the study – The risk of wildfires is increasing as the frequency and severity of drought and heat waves continue to rise. Wildfires are associated with the combustion of plant materials and emit smoke. In the atmosphere, smoke may spread readily across large areas. Smoke is composed of solid and liquid phase particulates and gases and has been identified as a causal agent of “smoke taint” in wine. On a smoky day, the intensity of direct light decreases because these particulates scatter sunlight. Even though this effect is frequently assumed to decrease plant photosynthesis, this assumption ignores the potential changes in diffuse light and may be based on scant evidence. This study compared leaf gas exchange on the sunny and shaded sides of a grapevine canopy during a very smoky, and thus hazy, day.

Material and methods – Five own-rooted Cabernet Sauvignon vines were used in a north-south oriented vineyard row in warm and arid eastern Washington during wildfire events in North America. Vines were drip-irrigated, spur-pruned, and trained to a loose vertical shoot-positioning system. Leaves at a height of 1.5 m were sampled on both sides of the canopy. Leaf temperature, light intensity, stomatal conductance, and gas exchange were measured with a portable infrared gas analyzer on 9 August 2018, in the afternoon about 4:00 PM. The diffuse light was estimated by blocking the direct light to the quantum sensor facing the sun.

Results – Diffuse light accounted for 40% of the incoming light. On the sun-exposed west side of the canopy, the light intensity in the afternoon was 1000 µmol m-2 s-1, while on the east side the light intensity was slightly above 100 µmol m-2 s-1. Leaves on the west-facing side of the canopy were 2°C warmer than leaves on the other side, and the former also had higher photosynthesis and transpiration rates, but leaves on both sides had the same stomatal conductance. Only receiving 10% sunlight, the shaded leaves maintained positive net carbon assimilation and had photosynthesis rates of 25% compared to the fully exposed leaves. While the leaves on the west side transpired at a rate of 7.6 mmol m-2 s-1, their counterparts on the east side maintained a rate of 6.1 mmol m-2 s-1.Therefore, the water use efficiency (WUE) was 27% lower for the east-facing canopy than for the opposite side. These results indicate leaves on the sunny side still received light at saturation level and leaves on the shaded side may provide surplus photosynthates on a smoky day. Further, in a well-watered vineyard, shaded leaves open their stomata once there is enough sunlight for photosynthesis even if the leaves are operating at lower WUE.

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Ben-Min CHANG1, Markus KELLER1*

Washington State University-Irrigated Agriculture Research & Extension Center, 24106 N. Bunn Rd., Prosser, Washington, USA

Contact the author

Keywords

photosynthesis, transpiration, stomata conductance, water use efficiency, light intensity

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The role and quantification of vitamins in wine: what do we know?

AIM: Vitamins are essential compounds to numerous organisms, including yeasts, and appear highly significant during winemaking processes.

Politics meets terroir. The story of Prosecco – Are GI’s just a protectionist racket?

The recent Free Trade Agreement negotiations between Australia and the European Union have again put the issue of Geographical Indications (GIs) in the spotlight. Australia has long demonstrated its understanding of GIs and maintains a clear and rigorous GI protection system for wine. For many years, Australia’s wine sector was a strong advocate for GIs and a strong system to protect the

Optimization and validation of a fully automated HS-SPME method for determination of VCCs and its application in wines submitted to accelerated ageing

Wine aroma is a complex gaseous mixture composed of various compounds; some of these molecules derive directly from the grapes while most of them are released and synthetized during fermentation or are due to ageing reactions

New insights of translocation of smoke-related volatile phenols in vivo grapevines

The increasing frequency of wildfires in grape-growing regions is seen as a significant risk for the grape and wine industry.

Toward an automatic way to identify red blotch infected vines from hyperspectral images acquired in the field

Vineyards are affected by different virus diseases, which can lower yield and affect the quality of grapes. Grapevine red blotch disease is one of them, and no curative solution exists. Once infected, a vine must be removed and replaced with a virus-free vine (aka roguing). Screening vineyards to look for symptoms can be time-consuming and needs well-trained experts. To improve this process, we conducted an experiment identifying infected vines using a hyperspectral camera in the field.