GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Diffuse light due to wildfire smoke enhances gas exchange of shaded leaves

Diffuse light due to wildfire smoke enhances gas exchange of shaded leaves

Abstract

Context and purpose of the study – The risk of wildfires is increasing as the frequency and severity of drought and heat waves continue to rise. Wildfires are associated with the combustion of plant materials and emit smoke. In the atmosphere, smoke may spread readily across large areas. Smoke is composed of solid and liquid phase particulates and gases and has been identified as a causal agent of “smoke taint” in wine. On a smoky day, the intensity of direct light decreases because these particulates scatter sunlight. Even though this effect is frequently assumed to decrease plant photosynthesis, this assumption ignores the potential changes in diffuse light and may be based on scant evidence. This study compared leaf gas exchange on the sunny and shaded sides of a grapevine canopy during a very smoky, and thus hazy, day.

Material and methods – Five own-rooted Cabernet Sauvignon vines were used in a north-south oriented vineyard row in warm and arid eastern Washington during wildfire events in North America. Vines were drip-irrigated, spur-pruned, and trained to a loose vertical shoot-positioning system. Leaves at a height of 1.5 m were sampled on both sides of the canopy. Leaf temperature, light intensity, stomatal conductance, and gas exchange were measured with a portable infrared gas analyzer on 9 August 2018, in the afternoon about 4:00 PM. The diffuse light was estimated by blocking the direct light to the quantum sensor facing the sun.

Results – Diffuse light accounted for 40% of the incoming light. On the sun-exposed west side of the canopy, the light intensity in the afternoon was 1000 µmol m-2 s-1, while on the east side the light intensity was slightly above 100 µmol m-2 s-1. Leaves on the west-facing side of the canopy were 2°C warmer than leaves on the other side, and the former also had higher photosynthesis and transpiration rates, but leaves on both sides had the same stomatal conductance. Only receiving 10% sunlight, the shaded leaves maintained positive net carbon assimilation and had photosynthesis rates of 25% compared to the fully exposed leaves. While the leaves on the west side transpired at a rate of 7.6 mmol m-2 s-1, their counterparts on the east side maintained a rate of 6.1 mmol m-2 s-1.Therefore, the water use efficiency (WUE) was 27% lower for the east-facing canopy than for the opposite side. These results indicate leaves on the sunny side still received light at saturation level and leaves on the shaded side may provide surplus photosynthates on a smoky day. Further, in a well-watered vineyard, shaded leaves open their stomata once there is enough sunlight for photosynthesis even if the leaves are operating at lower WUE.

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Ben-Min CHANG1, Markus KELLER1*

Washington State University-Irrigated Agriculture Research & Extension Center, 24106 N. Bunn Rd., Prosser, Washington, USA

Contact the author

Keywords

photosynthesis, transpiration, stomata conductance, water use efficiency, light intensity

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

OENOLOGICAL POTENTIAL OF AUTOCHTHONOUS SACCHAROMYCES CEREVISIAE STRAINS AND THEIR EFFECT ON THE PRODUCTION OF TYPICAL SAVATIANO WINES

Due to the global demand for terroir wines, the winemaking industry has focused attention on exploiting the local yeast microflora of each wine growing region to express the regional character and enhance the sensory profile of wines such as varietal typicity and aroma complexity. The objective of the present study was to isolate and compare the indigenous strains of Saccharomyces cerevisiae present in different vineyards in the Mesogeia – Attiki wine region (Greece), evaluate their impact on chemical composition and sensory profile of Savatiano wines and select the most suitable ones for winemaking process.

Effects of stress memory on grapevine resilience in response to recurrent drought and recovery events 

Plants have evolved different strategies to cope with environmental stresses and, although still debated, it was observed that they can remember past stress occurrence.
Anatomical and physiological adjustments have been observed in different grapevine cultivars after repeated drought exposure, however epigenetic, transcriptional and biochemical changes associated with drought-primed ecological memory have been poorly studied.
This work was conceived to test whether exposure to recurring events of mild drought could prime vines to endure severe drought stress. Particularly, we investigated whether the expected improved stress tolerance of Vitis vinifera cv Nebbiolo plants subjected over years to moderate and long-lasting water stress events (WS-primed) depended on molecular memory phenomena or on resetting of stress-induced signals.

Study of the vine performance and the wine composition of Tannat on the terroir of Colonia del Sacramento – Uruguay

Grape-growing terroirs were defined according to the method proposed by Falcetti and Asselin (1996) near of Colonia de Sacramento, a city of Uruguay situated on the left of the “Rio de la Plata”.

HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

Many wine styles require moderate or extended ageing to ensure optimal consumer experience. However, few consumers have the interest or ability to age wine themselves, and holding wine in optimal conditions for extended periods is expensive for producers. A study was conducted on the use of ul-trasound energy on wine, with particular reference to its impact on sensory and chemical profiles. The OIV has authorised the use of ultrasound for processing crushed grapes (must) in Resolution OENO 616-2019, but not yet for finished wine1,2.

Monitoring the tawny port wine aging process using precision enology

AIM: Tawny Port wine is produced in the Douro Demarcated Region by blending several fortified wines in different aging stages. During the aging process in small wood barrels, the red wine color progressively develops into tawny, medium tawny, or light tawny.