GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Diffuse light due to wildfire smoke enhances gas exchange of shaded leaves

Diffuse light due to wildfire smoke enhances gas exchange of shaded leaves

Abstract

Context and purpose of the study – The risk of wildfires is increasing as the frequency and severity of drought and heat waves continue to rise. Wildfires are associated with the combustion of plant materials and emit smoke. In the atmosphere, smoke may spread readily across large areas. Smoke is composed of solid and liquid phase particulates and gases and has been identified as a causal agent of “smoke taint” in wine. On a smoky day, the intensity of direct light decreases because these particulates scatter sunlight. Even though this effect is frequently assumed to decrease plant photosynthesis, this assumption ignores the potential changes in diffuse light and may be based on scant evidence. This study compared leaf gas exchange on the sunny and shaded sides of a grapevine canopy during a very smoky, and thus hazy, day.

Material and methods – Five own-rooted Cabernet Sauvignon vines were used in a north-south oriented vineyard row in warm and arid eastern Washington during wildfire events in North America. Vines were drip-irrigated, spur-pruned, and trained to a loose vertical shoot-positioning system. Leaves at a height of 1.5 m were sampled on both sides of the canopy. Leaf temperature, light intensity, stomatal conductance, and gas exchange were measured with a portable infrared gas analyzer on 9 August 2018, in the afternoon about 4:00 PM. The diffuse light was estimated by blocking the direct light to the quantum sensor facing the sun.

Results – Diffuse light accounted for 40% of the incoming light. On the sun-exposed west side of the canopy, the light intensity in the afternoon was 1000 µmol m-2 s-1, while on the east side the light intensity was slightly above 100 µmol m-2 s-1. Leaves on the west-facing side of the canopy were 2°C warmer than leaves on the other side, and the former also had higher photosynthesis and transpiration rates, but leaves on both sides had the same stomatal conductance. Only receiving 10% sunlight, the shaded leaves maintained positive net carbon assimilation and had photosynthesis rates of 25% compared to the fully exposed leaves. While the leaves on the west side transpired at a rate of 7.6 mmol m-2 s-1, their counterparts on the east side maintained a rate of 6.1 mmol m-2 s-1.Therefore, the water use efficiency (WUE) was 27% lower for the east-facing canopy than for the opposite side. These results indicate leaves on the sunny side still received light at saturation level and leaves on the shaded side may provide surplus photosynthates on a smoky day. Further, in a well-watered vineyard, shaded leaves open their stomata once there is enough sunlight for photosynthesis even if the leaves are operating at lower WUE.

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Ben-Min CHANG1, Markus KELLER1*

Washington State University-Irrigated Agriculture Research & Extension Center, 24106 N. Bunn Rd., Prosser, Washington, USA

Contact the author

Keywords

photosynthesis, transpiration, stomata conductance, water use efficiency, light intensity

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Comparison of the aroma profile in total and partial dealcoholisation of white and red wines by reverse osmosis

The increasing demand for low-alcohol and non-alcoholic wines has led to the development of advanced dealcoholisation techniques aimed at preserving wine quality while reducing ethanol content. Reverse osmosis is one of the most widely used membrane-based processes for the selective removal of ethanol [1].

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

Moderated consumption of alcoholic beverages and cancer risk

One on three cases of cancer is associated with lifestyle and nutritional patterns, and the excessive intake of alcoholic beverages is a well established risk factor. Moderate drinking has been associated with reduced or increased risk of various types of cancer, but the clinical relevance of the risk rates has not been evaluated in ad hoc prospective investigations.

Les préparations biodynamiques 500 et 501 ont elles un effet sur la vigne ?

Dans le cadre de TerclimPro 2025, Markus Rienth a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8396

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.