GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Switch genes as a key to understand the grapevine ripening disorder berry Shrivel?

Switch genes as a key to understand the grapevine ripening disorder berry Shrivel?

Abstract

Context and purpose of the study – The ripening of grapevine berries encompasses complex morphological and physiological processes, especially at veraison. Berry shrivel (BS) is a ripening physiological disorder affecting grape berries with visible symptoms appearing short after veraison. The main symptoms of BS are a strong reduction in sugar accumulation, inhibited anthocyanin biosynthesis and high pH values. The most popular red grape cultivar in Austria “Blauer Zweigelt” (Vitis vinifera L.) is specifically prone to develop the BS ripening disorder and up to date a no specific cause or causes could be identified. Recently omics approaches have identified and characterized key processes during grapevine ripening. Among them a small subset of genes, called SWITCH, have been described as markers for the onset of the ripening process in fruits. The peculiarity of a switch gene is to be expressed in a low level during the immature/green phase of development, to switch on at the onset of ripening and being significantly induced and highly expressed during the mature/ripening phase.

Material and methods – In this study, for the first time a transcriptomic analysis was undertaken to understand the metabolic modifications induced by the disorder. Different stages of berry development were considered including pre- and symptomatic berries.Samples selected for analyses were collected at 30, 44, 51, 58, 65, and 72 DAA. 50% veraison occurred approximately at 55 DAA.

Results – Different stages of berry development were considered including pre- and symptomatic berries. The total number of differentially expressed genes (DEG) between the two conditions was 3122. The number of DEG in the three pre-veraison samples was 0, 1, and 0; while the number of DEG modulated by BS in post-veraison was 297 (75 up-regulated, 222 down-regulated) at 58 DAA, 1489 (955 up-regulated, 534 down-regulated) at 65 DAA and 2452 (1415 up-regulated, 1036 down-regulated) at 72 DAA. During this key transition (58 DAA at veraison) we could identify 297 DEG. Most of them (75%) were down-regulated in BS. Among the 190 grapevine switch genes, at 58 DAA we identified 67 switch genes differentially expressed; all of them were down-regulated in BS samples. Our results showed no metabolic alterations in pre-symptomatic and pre-veraison samples. Interestingly, at veraison, with still not visible symptoms appearing on the berry, a subset of switch genes previously suggested as master regulators of the ripening onset in grape berries, were strongly lower expressed in BS. Later during the ripening phase and with visible symptoms of the disorder, more than 3000 genes were differentially expressed. Most of them with significant lower expression during ripening belonged to the flavonoid pathway, and others were involved in the sugar metabolism. In conclusion, these results highlight a pivotal role of the switch genes in grapevine ripening, as well as their possible contribution to induce the ripening disorder berry shrivel, although it remains unclear whether this is part of the cause or consequences of the BS disorder.

DOI:

Publication date: September 20, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Michaela GRIESSER1*, Stefania SAVOI1,2, Jose Carlos HERRERA1, Astrid FORNECK1

1 Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 24, 3430 Tulln, Austria

2 Current address: Montpellier SupAgro, 2 Place Pierre Viala, 34060 Montpellier, France

Contact the author

Keywords

grapevine ripening, Berry Shrivel, SWITCH genes, physiological disorders

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Multivariate characterization of Italian monovarietal red wines using FTIR spectroscopy

The assessment of wine authenticity is of great importance for consumers, producers and regulatory agencies to guarantee the geographical origin of wines and grape variety as well. Since mid-infrared (MIR) spectroscopy with chemometrics represent a suitable tool to ascertain the wine composition, including features associated with the polyphenolic compounds, the aim of this study was to generate MIR spectra of red wines to be exploited for classification of red wines based on the relationship between grape variety and wine composition. Several multivariate data analyses were used, including Principal Component Analysis (PCA), Discriminant Analysis (DA), Support Vector Machine (SVM), and Soft Intelligent Modelling of Class Analogy (SIMCA).

Investigation of the effect of gelatine and egg albumin fining and cross-flow microfiltration on the phenolic composition of Pinotage red wine

Results indicated that cross-flow microfiltration removed similarly to fining treatments the most astringent tannins, but cross-flow microfiltration also removed up to 14 % more colour. RP-HPLC and spectrophotometric results showed that egg albumin is a softer fining treatment compared to gelatine and cross-flow microfiltration.

Outside and inside grapevine roots: arbuscular mycorrhizal fungal communities in a ‘nebbiolo’ vineyard 

In field conditions, grapevine roots are colonized by arbuscular mycorrhizal fungi (AMF). Little is known about the species composition of AMF communities associated to grapevine.

Rationalising the impact of time, light, temperature, and oxygen on the evolution of rosé wines by means of a surface response methodology approach

The widespread use of flint glass bottles for rosé wines is driven by consumer preference for color as a key choice factor.

Vine field monitoring using high resolution remote sensing images: segmentation and characterization of rows of vines

A new framework for the segmentation and characterization of row crops on remote sensing images has been developed and validated for vineyard monitoring. This framework operates on any high-resolution remote sensing images since it is mainly based on geometric information. It aims at obtaining maps describing the variation of a vegetation index such as NDVI along each row of a parcel.