GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Switch genes as a key to understand the grapevine ripening disorder berry Shrivel?

Switch genes as a key to understand the grapevine ripening disorder berry Shrivel?

Abstract

Context and purpose of the study – The ripening of grapevine berries encompasses complex morphological and physiological processes, especially at veraison. Berry shrivel (BS) is a ripening physiological disorder affecting grape berries with visible symptoms appearing short after veraison. The main symptoms of BS are a strong reduction in sugar accumulation, inhibited anthocyanin biosynthesis and high pH values. The most popular red grape cultivar in Austria “Blauer Zweigelt” (Vitis vinifera L.) is specifically prone to develop the BS ripening disorder and up to date a no specific cause or causes could be identified. Recently omics approaches have identified and characterized key processes during grapevine ripening. Among them a small subset of genes, called SWITCH, have been described as markers for the onset of the ripening process in fruits. The peculiarity of a switch gene is to be expressed in a low level during the immature/green phase of development, to switch on at the onset of ripening and being significantly induced and highly expressed during the mature/ripening phase.

Material and methods – In this study, for the first time a transcriptomic analysis was undertaken to understand the metabolic modifications induced by the disorder. Different stages of berry development were considered including pre- and symptomatic berries.Samples selected for analyses were collected at 30, 44, 51, 58, 65, and 72 DAA. 50% veraison occurred approximately at 55 DAA.

Results – Different stages of berry development were considered including pre- and symptomatic berries. The total number of differentially expressed genes (DEG) between the two conditions was 3122. The number of DEG in the three pre-veraison samples was 0, 1, and 0; while the number of DEG modulated by BS in post-veraison was 297 (75 up-regulated, 222 down-regulated) at 58 DAA, 1489 (955 up-regulated, 534 down-regulated) at 65 DAA and 2452 (1415 up-regulated, 1036 down-regulated) at 72 DAA. During this key transition (58 DAA at veraison) we could identify 297 DEG. Most of them (75%) were down-regulated in BS. Among the 190 grapevine switch genes, at 58 DAA we identified 67 switch genes differentially expressed; all of them were down-regulated in BS samples. Our results showed no metabolic alterations in pre-symptomatic and pre-veraison samples. Interestingly, at veraison, with still not visible symptoms appearing on the berry, a subset of switch genes previously suggested as master regulators of the ripening onset in grape berries, were strongly lower expressed in BS. Later during the ripening phase and with visible symptoms of the disorder, more than 3000 genes were differentially expressed. Most of them with significant lower expression during ripening belonged to the flavonoid pathway, and others were involved in the sugar metabolism. In conclusion, these results highlight a pivotal role of the switch genes in grapevine ripening, as well as their possible contribution to induce the ripening disorder berry shrivel, although it remains unclear whether this is part of the cause or consequences of the BS disorder.

DOI:

Publication date: September 20, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Michaela GRIESSER1*, Stefania SAVOI1,2, Jose Carlos HERRERA1, Astrid FORNECK1

1 Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 24, 3430 Tulln, Austria

2 Current address: Montpellier SupAgro, 2 Place Pierre Viala, 34060 Montpellier, France

Contact the author

Keywords

grapevine ripening, Berry Shrivel, SWITCH genes, physiological disorders

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Aroma typicity of Timorasso wines: influence of ageing on volatile organic compounds and sensory descriptors

‘Timorasso’ is an autochthonous white grape variety from southern Piedmont (Italy) used for producing wines in the Colli Tortonesi product designation of origin (PDO). Over the last decade, there has been a notable rise in its production, due to the increased interest of wine enthusiasts who prized its wine distinctive ageing notes [1].

Definition of functional indicators of the vine to characterize wine terroirs

La caractérisation des terroirs viticoles est traditionnellement basée sur des descripteurs de la géologie et de la pédologie des différents milieux rencontrés, couplées à des données climatiques

Coping with heatwaves: management strategies for berry survival and vineyard resilience

Climate change is leading to an increase in average temperature and in the frequency and severity of heatwaves that is already significantly affecting grapevine phenology and berry composition (Webb et al., 2010). This is compounded by water stress, which is well known to increase the vulnerability of grapevines and berries to heatwaves. In hot climate regions like australia, grape production is only possible due to relatively secure supplies of water for irrigation. However, the upper temperature limits for berry survival of well-watered grapevines remains to be tested.

Release and perception of γ-nonalactone and massoia lactone in the red wine matrix: impact of ethanol and acidity

Climate change (CC) is altering grape/wine composition, challenging wine sensory quality. Rising temperatures increase grape sugar levels, with higher wine ethanol (EtOH) contents, reduce total acidity (TA) converging with increased pH and lead to the accumulation of CC odorous markers such as γ-nonalactone (γ-C9) and massoia lactone (ML).

Influence of successive oxygen saturations of a grape juice, supplemented or not with laccase, on its color and hydroxycinnamic acids concentration

Aim: This work studies how successive O2 saturations affects the color and hydroxycinnamic
acids concentration in the absence and presence of laccase from B. cinerea with the aim of better understanding the browning processes.

Materials and methods: Grapes of Muscat of Alexandria were harvested and pressed with a vertical press to extract 60% of their juice. Aliquots of 30 mL of this must were placed in 60 mL flasks equipped with a pill (PreSens Precision Sensing GmbH) for measuring oxygen by luminescence (Nomasense TM O2 Trace Oxygen Analyzer).