GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Bees, climate changes, and “environmental sustainability 4.1c” in viticulture and the territory for a new global multiproductive “biometaethical district 4.1c”

Bees, climate changes, and “environmental sustainability 4.1c” in viticulture and the territory for a new global multiproductive “biometaethical district 4.1c”

Abstract

The use of bees as pollinators in vine varieties with physiologically female flowers (Picolit, Bicane, Ceresa, Moscato rosa, etc.) (Cargnello, 1983) and as bio-indicators for biodiversity and environmental sustainability is well-known. Furthermore, there are interests in: 1-a. Making the viticulture of Belluno (Province of Veneto in North-eastern Italy, which is also famous for the Dolomites -a UNESCO World Heritage-) regain the socioeconomic role which it is entitled to and which it had got in its past by aiming at the enhancement of local grape variety in harmony with others, for example with the neighboring area of the Conegliano and Valdobbiadene Prosecco Superiore DOCG; 2-a. Maintaining and further improving the important natural and healthy environment of Belluno, and making its territory and the “lookout” means of the environmental sustainability, including its vineyards, even more naturally original and sustainable 4.1C.
The environmental sustainability 4.1C, -in accordance with the known applied philosophy and methodology of the “Great Chain MetaEthics 4.1C”, an algorithm by the Conegliano Campus 5.1C,- has to harmonize in-Chain with all the other indexed aspects within the territory, technical, economic, social, occupational, existential aspects -for humans and all other living and non-living entities (including biodiversity and landscape), as well as ethical, and “MetaEthical 4.1C” aspects, in order to create, by taking “a step back to the future 4.1C”, not a “Bio District”, but indeed a “Bio MetaEthical District 4.1C Multiproductive” as indicated by the “Charter of Sustainability BIO – MetaEthics” of GiESCO. (Carbonneau and Cargnello, 2017). All of the foregoing is related to the known climate changes that are already underway in this area, as well as to the current and future paradigms 4.1C. Those paradigms are existential, social, occupational, economic, they relate to lifestyles and to styles of wellness, well-being, being well when being, and psycho-physical well-being for all, according to the varying sensibilities,… as well as to the ethical and “MetaEthical 4.1C” paradigms for the territory. These innovative, original, sustainable 4.1C activities and researches on beekeeping in viticulture for the territory come within the above context, where beekeeping is intended as: 1- A productive activity of a “Bio MetaEthical District 4.1C Global Multiproductive” with its corresponding original, innovative, sustainable 4.1C “Bio MetaEthics4.1C” certification, and 2- an impressive, innovative, sustainable 4.1C, natural “lookout” and as an index of the pollution of the environment, including the vineyard and the wine.

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Giovanni CARGNELLO1,  Manlio DOLIONI2, Gianni TEO1, Cristian BOLZONELLA3

Conegliano Campus 5.1C
2 Consorzio Vitivinicolo. Apicultore
3 Università di Padova – Seat of Conegliano – Treviso (Italy)

Contact the author

Keywords

bees, vineyard, methaethic 4.1C , sustainability 4.1C

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Implementing alternative grapevine systems that incorporate sustainable strategies and innovative farming practices is essential. However, we lack tools for measuring the impact of these new practices on the overall sustainability of vineyards. DEXi PM Vigne (Gary et al., 2015) is a tool developed for ex ante assessment of the sustainability of grapevine cropping systems, from the plot to the farm scale. In the present study, we focused on implementing new strategies of integrated crop protection management with limited pesticide use in vineyards.

Enological technics to enhance the aromatic qualities of white spirits 

Eugenol has been identified as a quality marker in armagnac white spirits. In particular, those produced from the Baco blanc variety, the only hybrid variety authorised in a French PDO, bred since 1898 from noah (vitis labrusca x v.riparia) and folle blanche (v. Vinifera). The varietal compound of Baco blanc, eugenol has many original properties.

Revealing the Barossa zone sub-divisions through sensory and chemical analysis of Shiraz wine

The Barossa zone is arguably one of the most well-recognised wine producing regions in Australia and internationally; known mainly for the production of its distinct Shiraz wines. However, within the broad Barossa geographical delimitation, a variation in terroir can be perceived and is expressed as sensorial and chemical profile differences between wines. This study aimed to explore the sub-division classification across the Barossa region using chemical and sensory measurements. Shiraz grapes from 4 different vintages and different vineyards across the Barossa (2018, n = 69; 2019, n = 72; 2020, n = 79; 2021, n = 64) were harvested and made using a standardised small lot winemaking procedure. The analysis involved a sensory descriptive analysis with a highly trained panel and chemical measurement including basic chemistry (e.g. pH, TA, alcohol content, total SO2), phenolic composition, volatile compounds, metals, proline, and polysaccharides. The datasets were combined and analysed through an unsupervised, clustering analysis. Firstly, each vintage was considered separately to investigate any vintage to vintage variation. The datasets were then combined and analysed as a whole. The number of sub-divisions based on the measurements were identified and characterised with their sensory and chemical profile and some consistencies were seen between the vintages. Preliminary analysis of the sensory results showed that in most vintages, two major groups could be identified characterised with one group showing a fruit-forward profile and another displaying savoury and cooked vegetables characters. The exploration of distinct profiles arising from the Barossa wine producing region will provide producers with valuable information about the regional potential of their wine assisting with tools to increase their target market and reputation. This study will also provide a robust and comprehensive basis to determine the distinctive terroir characteristics which exist within the Barossa wine producing region.

Frost variability in the Champagne vineyard: probability calendar

Dans le vignoble champenois, le risque thermique associé au gel des bourgeons au printemps et en hiver est très mal connu et ne peut être envisagé qu’à l’échelle locale, en raison d’une variabilité spatiale forte. L’objectif de l’étude est d’appréhender ce risque de façon fiable et pluri locale en utilisant le réseau de stations météos récemment implanté.

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties.