GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Bees, climate changes, and “environmental sustainability 4.1c” in viticulture and the territory for a new global multiproductive “biometaethical district 4.1c”

Bees, climate changes, and “environmental sustainability 4.1c” in viticulture and the territory for a new global multiproductive “biometaethical district 4.1c”

Abstract

The use of bees as pollinators in vine varieties with physiologically female flowers (Picolit, Bicane, Ceresa, Moscato rosa, etc.) (Cargnello, 1983) and as bio-indicators for biodiversity and environmental sustainability is well-known. Furthermore, there are interests in: 1-a. Making the viticulture of Belluno (Province of Veneto in North-eastern Italy, which is also famous for the Dolomites -a UNESCO World Heritage-) regain the socioeconomic role which it is entitled to and which it had got in its past by aiming at the enhancement of local grape variety in harmony with others, for example with the neighboring area of the Conegliano and Valdobbiadene Prosecco Superiore DOCG; 2-a. Maintaining and further improving the important natural and healthy environment of Belluno, and making its territory and the “lookout” means of the environmental sustainability, including its vineyards, even more naturally original and sustainable 4.1C.
The environmental sustainability 4.1C, -in accordance with the known applied philosophy and methodology of the “Great Chain MetaEthics 4.1C”, an algorithm by the Conegliano Campus 5.1C,- has to harmonize in-Chain with all the other indexed aspects within the territory, technical, economic, social, occupational, existential aspects -for humans and all other living and non-living entities (including biodiversity and landscape), as well as ethical, and “MetaEthical 4.1C” aspects, in order to create, by taking “a step back to the future 4.1C”, not a “Bio District”, but indeed a “Bio MetaEthical District 4.1C Multiproductive” as indicated by the “Charter of Sustainability BIO – MetaEthics” of GiESCO. (Carbonneau and Cargnello, 2017). All of the foregoing is related to the known climate changes that are already underway in this area, as well as to the current and future paradigms 4.1C. Those paradigms are existential, social, occupational, economic, they relate to lifestyles and to styles of wellness, well-being, being well when being, and psycho-physical well-being for all, according to the varying sensibilities,… as well as to the ethical and “MetaEthical 4.1C” paradigms for the territory. These innovative, original, sustainable 4.1C activities and researches on beekeeping in viticulture for the territory come within the above context, where beekeeping is intended as: 1- A productive activity of a “Bio MetaEthical District 4.1C Global Multiproductive” with its corresponding original, innovative, sustainable 4.1C “Bio MetaEthics4.1C” certification, and 2- an impressive, innovative, sustainable 4.1C, natural “lookout” and as an index of the pollution of the environment, including the vineyard and the wine.

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Giovanni CARGNELLO1,  Manlio DOLIONI2, Gianni TEO1, Cristian BOLZONELLA3

Conegliano Campus 5.1C
2 Consorzio Vitivinicolo. Apicultore
3 Università di Padova – Seat of Conegliano – Treviso (Italy)

Contact the author

Keywords

bees, vineyard, methaethic 4.1C , sustainability 4.1C

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

EFFECT OF FERMENTATION TEMPERATURE GRADIENT AND SKIN CONTACT ON ESTER AND THIOL PRODUCTION AND TROPICAL FRUIT PERCEPTION IN CHARDONNAY WINES

Wines with tropical fruit aromas have become increasingly more available1,2. With increased availability of different wine styles, it has become important to understand the compounds that cause the fruity aromas in wine. Previous work using micro fermentations showed that fermentation temperature gradients and time on skins resulted in an increase in thiol and ester compounds post fermentation and these compounds are known to cause tropical fruit aroma in wines³. This work aimed to scale up these fermentations/operations to determine if the desired aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

α-Terpinyl ethyl ether: stereoselective GC × GC confirmation and identification of its precursors in wine

Wines exhibit profound chemical complexity which arise from a diverse array of compounds that contribute to its sensory profile.

Designing and managing a sustainable vineyard in a climate change scenario

Extension of the growing season, compression of the annual growth cycle and higher frequency and severity of weather extreme events are consistent features of global warming. While mitigation of factors causing global warming is necessary in the medium-long term, wine growers need “ready to go” adaptation practices to counteract negative effects bound to climate change. This must be done in a sustainably way, meaning that remunerative yield, desired grape quality, low production cost and environment friendly solutions must be effectively merged. In this work, we will review contribution given over the last two decades prioritizing issues related to scion and rootstock choice, changes in vineyard floor management, new perception related to the use of irrigation in vineyards, adaptation practices aimed at decompress maturity, solutions to counteract or minimize damages due to late frost and sunburn and, lastly, some hints on how precision viticulture can help with all of this.

Revealing the Barossa zone sub-divisions through sensory and chemical analysis of Shiraz wine

The Barossa zone is arguably one of the most well-recognised wine producing regions in Australia and internationally; known mainly for the production of its distinct Shiraz wines. However, within the broad Barossa geographical delimitation, a variation in terroir can be perceived and is expressed as sensorial and chemical profile differences between wines. This study aimed to explore the sub-division classification across the Barossa region using chemical and sensory measurements. Shiraz grapes from 4 different vintages and different vineyards across the Barossa (2018, n = 69; 2019, n = 72; 2020, n = 79; 2021, n = 64) were harvested and made using a standardised small lot winemaking procedure. The analysis involved a sensory descriptive analysis with a highly trained panel and chemical measurement including basic chemistry (e.g. pH, TA, alcohol content, total SO2), phenolic composition, volatile compounds, metals, proline, and polysaccharides. The datasets were combined and analysed through an unsupervised, clustering analysis. Firstly, each vintage was considered separately to investigate any vintage to vintage variation. The datasets were then combined and analysed as a whole. The number of sub-divisions based on the measurements were identified and characterised with their sensory and chemical profile and some consistencies were seen between the vintages. Preliminary analysis of the sensory results showed that in most vintages, two major groups could be identified characterised with one group showing a fruit-forward profile and another displaying savoury and cooked vegetables characters. The exploration of distinct profiles arising from the Barossa wine producing region will provide producers with valuable information about the regional potential of their wine assisting with tools to increase their target market and reputation. This study will also provide a robust and comprehensive basis to determine the distinctive terroir characteristics which exist within the Barossa wine producing region.

Modulation of berry composition by different vineyard management practices

High concentration of sugars in grapes and alcohol in wines is one of the consequences of climate change on viticulture production in several wine-growing regions. In order to investigate the possibilities of adaptation of vineyard management practices aimed to reduce the accumulation of sugar during the maturation phase without reducing the accumulation of anthocyanins in grapes, a study with severe shoot trimming, shoot thinning, cluster thinning and date of harvest was conducted on Merlot variety in Istria region (Croatia), under the Mediterranean climate. Four factors which may affect grape maturation and its composition at harvest were investigated in a two-years experiment; severe shoot trimming applied at veraison when >80% of berries changed colour (in comparison to untreated control), shoot thinning (0 and 30%), cluster thinning (0 and 30%), and the date of harvest (early and standard harvest dates). Shoot thinning had no significant impact on berry composition, despite the obtained reduction in yield per vine. Lower Brix in grapes were obtained with earlier harvest date and if no cluster thinning was applied, although at the same time a reduction in the concentration of anthocyanins in berries was observed in these treatments. On the other hand, if severe shoot trimming was applied when >80% of berries changed colour, a reduction of Brix was obtained without a negative impact on berry anthocyanins concentration. We conclude that in cases when undesirably high sugar concentrations at harvest are expected, severe shoot trimming at 80% veraison may effectively be used in order to obtain moderate sugar concentration in berries together with the adequate phenolic composition.