GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Bees, climate changes, and “environmental sustainability 4.1c” in viticulture and the territory for a new global multiproductive “biometaethical district 4.1c”

Bees, climate changes, and “environmental sustainability 4.1c” in viticulture and the territory for a new global multiproductive “biometaethical district 4.1c”

Abstract

The use of bees as pollinators in vine varieties with physiologically female flowers (Picolit, Bicane, Ceresa, Moscato rosa, etc.) (Cargnello, 1983) and as bio-indicators for biodiversity and environmental sustainability is well-known. Furthermore, there are interests in: 1-a. Making the viticulture of Belluno (Province of Veneto in North-eastern Italy, which is also famous for the Dolomites -a UNESCO World Heritage-) regain the socioeconomic role which it is entitled to and which it had got in its past by aiming at the enhancement of local grape variety in harmony with others, for example with the neighboring area of the Conegliano and Valdobbiadene Prosecco Superiore DOCG; 2-a. Maintaining and further improving the important natural and healthy environment of Belluno, and making its territory and the “lookout” means of the environmental sustainability, including its vineyards, even more naturally original and sustainable 4.1C.
The environmental sustainability 4.1C, -in accordance with the known applied philosophy and methodology of the “Great Chain MetaEthics 4.1C”, an algorithm by the Conegliano Campus 5.1C,- has to harmonize in-Chain with all the other indexed aspects within the territory, technical, economic, social, occupational, existential aspects -for humans and all other living and non-living entities (including biodiversity and landscape), as well as ethical, and “MetaEthical 4.1C” aspects, in order to create, by taking “a step back to the future 4.1C”, not a “Bio District”, but indeed a “Bio MetaEthical District 4.1C Multiproductive” as indicated by the “Charter of Sustainability BIO – MetaEthics” of GiESCO. (Carbonneau and Cargnello, 2017). All of the foregoing is related to the known climate changes that are already underway in this area, as well as to the current and future paradigms 4.1C. Those paradigms are existential, social, occupational, economic, they relate to lifestyles and to styles of wellness, well-being, being well when being, and psycho-physical well-being for all, according to the varying sensibilities,… as well as to the ethical and “MetaEthical 4.1C” paradigms for the territory. These innovative, original, sustainable 4.1C activities and researches on beekeeping in viticulture for the territory come within the above context, where beekeeping is intended as: 1- A productive activity of a “Bio MetaEthical District 4.1C Global Multiproductive” with its corresponding original, innovative, sustainable 4.1C “Bio MetaEthics4.1C” certification, and 2- an impressive, innovative, sustainable 4.1C, natural “lookout” and as an index of the pollution of the environment, including the vineyard and the wine.

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Giovanni CARGNELLO1,  Manlio DOLIONI2, Gianni TEO1, Cristian BOLZONELLA3

Conegliano Campus 5.1C
2 Consorzio Vitivinicolo. Apicultore
3 Università di Padova – Seat of Conegliano – Treviso (Italy)

Contact the author

Keywords

bees, vineyard, methaethic 4.1C , sustainability 4.1C

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Observatoire Grenache en vallée du Rhône : démarche et premiers résultats après une année d’étude

Face à l’enjeu d’affirmer et de mieux comprendre la spécificité des vins en relation avec leur origine, la notion de « terroir », avec la richesse de sens et la diversité des perspectives qui l’éclairent, se révèle la clef de voûte de la production et de la valorisation de vins personnalisés et typiques. Asseoir la connaissance des principaux terroirs de la Vallée du Rhône sur des bases autres que celles, jusqu’alors essentiellement empiriques, invoquées dans la seconde grande région française productrice de vins d’AOC, constitue un projet conforme à l’intérêt voué à cet enjeu d’actualité.

Regional discrimination of shiraz using targeted and non-targeted analytical approaches

Aims: Shiraz is the most widely cultivated grape variety in Australia, and is grown under a range of viticultural and climatic conditions. Given its importance to the Australian wine sector, a number of studies have been conducted in recent years which involved a comprehensive assessment of grape composition, in order to objectively predict wine quality and style outcomes.

Apports des mesures de résistivité électrique du sol dans les études sur le fonctionnement de la vigne et dans la spatialisation parcellaire

La mesure de la résistivité électrique des sols est une technique non destructive, spatialement intégrante, utilisée depuis peu en viticulture. L’utilisation d’appareils de mesures performant et de logiciels adaptés permet de traiter les données afin de pouvoir visualiser en deux ou trois dimensions les variations de textures ou d’humidité d’un sol.

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers.