GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Bees, climate changes, and “environmental sustainability 4.1c” in viticulture and the territory for a new global multiproductive “biometaethical district 4.1c”

Bees, climate changes, and “environmental sustainability 4.1c” in viticulture and the territory for a new global multiproductive “biometaethical district 4.1c”

Abstract

The use of bees as pollinators in vine varieties with physiologically female flowers (Picolit, Bicane, Ceresa, Moscato rosa, etc.) (Cargnello, 1983) and as bio-indicators for biodiversity and environmental sustainability is well-known. Furthermore, there are interests in: 1-a. Making the viticulture of Belluno (Province of Veneto in North-eastern Italy, which is also famous for the Dolomites -a UNESCO World Heritage-) regain the socioeconomic role which it is entitled to and which it had got in its past by aiming at the enhancement of local grape variety in harmony with others, for example with the neighboring area of the Conegliano and Valdobbiadene Prosecco Superiore DOCG; 2-a. Maintaining and further improving the important natural and healthy environment of Belluno, and making its territory and the “lookout” means of the environmental sustainability, including its vineyards, even more naturally original and sustainable 4.1C.
The environmental sustainability 4.1C, -in accordance with the known applied philosophy and methodology of the “Great Chain MetaEthics 4.1C”, an algorithm by the Conegliano Campus 5.1C,- has to harmonize in-Chain with all the other indexed aspects within the territory, technical, economic, social, occupational, existential aspects -for humans and all other living and non-living entities (including biodiversity and landscape), as well as ethical, and “MetaEthical 4.1C” aspects, in order to create, by taking “a step back to the future 4.1C”, not a “Bio District”, but indeed a “Bio MetaEthical District 4.1C Multiproductive” as indicated by the “Charter of Sustainability BIO – MetaEthics” of GiESCO. (Carbonneau and Cargnello, 2017). All of the foregoing is related to the known climate changes that are already underway in this area, as well as to the current and future paradigms 4.1C. Those paradigms are existential, social, occupational, economic, they relate to lifestyles and to styles of wellness, well-being, being well when being, and psycho-physical well-being for all, according to the varying sensibilities,… as well as to the ethical and “MetaEthical 4.1C” paradigms for the territory. These innovative, original, sustainable 4.1C activities and researches on beekeeping in viticulture for the territory come within the above context, where beekeeping is intended as: 1- A productive activity of a “Bio MetaEthical District 4.1C Global Multiproductive” with its corresponding original, innovative, sustainable 4.1C “Bio MetaEthics4.1C” certification, and 2- an impressive, innovative, sustainable 4.1C, natural “lookout” and as an index of the pollution of the environment, including the vineyard and the wine.

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Giovanni CARGNELLO1,  Manlio DOLIONI2, Gianni TEO1, Cristian BOLZONELLA3

Conegliano Campus 5.1C
2 Consorzio Vitivinicolo. Apicultore
3 Università di Padova – Seat of Conegliano – Treviso (Italy)

Contact the author

Keywords

bees, vineyard, methaethic 4.1C , sustainability 4.1C

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

1H-NMR-based Untargeted Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

Untargeted metabolomics has proven to be an effective method to study the impact of the terroir on metabolic profile of wines. In this context, the aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through 1H-NMR metabolomics combined with chemometrics.Grapes from Nero d’Avola L. red cultivar cultivated on four different soil types were separately vinified to obtain four different red wines.One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz

A sensometabolomic approach to understand wine mouthfeel percepts

Targeted analytical methods can overlook compounds that are a priori unknown to play a role in the mouthfeel sensations. This limitation can be overcome with the information provided by untargeted metabolomic analysis using UPLC‐QTOF-MS. To this end, an untargeted metabolomic approach applied to 42 red wines has allowed development of a model with predictive capacity by cross-validation for the “dry”, “oily” and “unctuous” sensations perceived by a sensory panel. The optimal PLS model for “dry” retained compounds with positive regression coefficients (≥ 0.17) including a trimer procyanidin, a peptide, and four anthocyanins.

Barbera d’Asti: the characterization of the vineyard sites

[English version below]

L’objectif de l’étude est de mettre en évidence les différences rencontrées entre les vins Barbera d’Asti, qui sont produits en AOC. Celles-ci sont imputées aux terroirs caractérisés selon les facteurs pédologiques, climatiques, et qui conduisent à des différents potentiels viticoles et œnologiques. Il est proposé une individualisation des sous-zones.

DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

Usually the winemaker consider polyphenols from the grape berry as an actor of the wine quality. There are frequently consider as a marker of grape maturity. It is commonly known that winemaker consider tannins and anthocyanins as main polyphenol actors for winemaking practices and wine quality. Here we will focus on the characterisation of lignins in grape seeds. Previous studies suggest that the seed is lignified [1], which could explain the change in colour of the seed when it reaches maturity and thus provide a reliable indicator for describing the maturity stage in the seed.

An alternative for reducing calcium in wine and lowering the risk of insoluble salt formation

Wine minerals, including calcium, derive mainly from grape berry extraction, but they could also arise from winemaking additives, processing aids, and other sources.