GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Grape phylloxera leaf-feeding populations in commercial vineyards – a new biotype ?

Grape phylloxera leaf-feeding populations in commercial vineyards – a new biotype ?


Context and purpose of the study – Grape Phylloxera (Daktulosphaira vitifoliae Fitch) ordinarily has great difficulty establishing leaf galls on the European Grapevine (VitisviniferaL.). Yet populations of leaf-feeding Phylloxera are increasingly being observed throughout commercial vineyards world-wide. Effective plant protection strategies including quarantine actions are currently missing to fight, grape phylloxera populations in affected vineyards and combat linked negative effects on vines and yield. Contrary to the otherwise mandatory continuous infestation pressure from externally established populations (e.g. from populations developed on rootstock foliage or other interspecific hybrids, these leaf-feeding populations seem to establish themselves annually. The biotypes currently known (A-G) are differentiated based on their host-adapted performance on groups of Vitis plants (Vitis vinifera (E), American Vitis species (A), hybrids (ExA) and (AxA). A standardized protocol (double isolation chamber system) is employed to verify the hypothesis that these populations stem from a biotype, which is better adapted to create galls on V. vinifera leaves.

Material and methods –In the present study we monitored above- and belowground insect life table and host performance parameters of leaf-feeding grape Phylloxera strains collected from infested commercial vineyards. Standard phylloxera strains belonging to the biotypes A, B and C are used as anchor lineages for comparisons of phylloxera performance on the host plants: Teleki 5C, Riesling, Fercal and Marechal Foch. Three grape phylloxera strains from vineyards in Italy, Austria and Germany were monitored rating life table (insect based) and host performance (root- and leaf-gall based) parameters once per week for 40 days.

Results – our preliminary results clearly identified Grape Phylloxera lineages showing host-adapted performance attributed to Biotype G indicating superior performance on leaves of V. vin. cv. Riesling if compared with standard biotypes. These lineages maintained the traits over several asexual life cycles under controlled quarantine conditions and serve as experimental reference strains to further elucidate the mechanisms of these shifts in host performance. Studies on the impact of elevated temperatures to enhance fitness and population size of Biotype G Phylloxera are underway; as is research on the Phylloxera – grapevine interaction under climate change conditions, which may shed further light on the new phenomenon in commercial vineyards.
In conclusion biotype together with host plant genotype, environmental conditions, altered vineyard technology and management may affect the ecological network in vineyards leading enhanced susceptibility against leaf-feeding Phylloxera. Understanding and modeling of these factors is essential for the development of vineyard management strategies in phylloxerated wine areas.


Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster


Astrid FORNECKa*, Markus W. EITLEa, Jurrian H.G. WILMINKab, Michael BREUERab

a University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Crop Sciences,  Institute of Viticulture and Pomology, Konrad Lorenz Straße 24, A-3430 Tulln
b State Institute for Viticulture and Enology, Merzhauser Str. 119, D-79100 Freiburg

Contact the author


grape phylloxera, leaf galls, biotypes, vineyard management, host plant adaptation


GiESCO | GiESCO 2019 | IVES Conference Series


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.