GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Testing the pathogen e-learning and field training course on grapevine virus knowledge and management

Testing the pathogen e-learning and field training course on grapevine virus knowledge and management

Abstract

Context and purpose of the study – One of the reasons of the spread of grapevine virus diseases in vineyards around the world is the lack of knowledge by the main actors of the wine sector. To face this problem, five partners worked together to develop the PAThOGEN project, a training program aimed to improve grapevine virus knowledge and management. The partnership gathers one French technical center (IFV), one Spanish university (USC), one Italian applied research center (CREA), one Spanish foundation specialized in training and technology transfer (FEUGA) and one Italian SME specialized in the development of informatics tools and in knowledge transfer (HORTA).The objectives of PAThOGEN are: (i) to develop and maintain a high-quality work-based Vocational and Education Training program, (ii) to improve the skills of professionals of the wine sector.

Material and methods – The PAThOGEN training is the result of a project co-funded by the Erasmus+ Program of the European Union (2015-1FR1-KA202-015329). The e-learning training was developed in two levels (BASIC and ADVANCED) and four languages (English, French, Spanish and Italian); the training is completed with two practical sessions in the field, one in spring and one in autumn. The contents and platform were evaluated by the partners, an external evaluator and an advisory board of wine technicians from the 3 partner countries to ensure that the content proposed for the courses corresponded to the needs of the professionals of the sector. Once this step was validated, the pilot courses were available online, and groups of “student-testers” were selected in the 3 countries from different professional categories (technicians, winegrowers, nurserymen, students, teachers, phytosanitary official services…). Throughout the process of developing the courses, the advisors and students assessment has been essential to getting a demand-driven training.

Results – In the 3 countries, 128 people have tested the online courses. A very large majority (98%) considered the PATHOGEN program as an “interesting” or “very interesting” training course. The field sessions were crucial to finalize the training and were well appreciated by students because they allowed them to identify the symptoms of virus diseases in vivo (94% of the students had a “very good impression” concerning the field session). The detailed evaluations allowed us to rework the courses both in terms of content (simplification, clarity of information…) and functionality of the platform (speed of animations, quality of audio, sharpness of photos…). We have therefore improved the 8 versions of the courses (4 languages, 2 levels) taking these remarks into account and they are currently available at www.pathogenproject.eu

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Julián GARCÍA-BERRIOS1, Elisa ANGELINI2, Cristina CABALEIRO1, Anne-Sophie SPILMONT3, Daniel DURÁN4, Tiziano BETTATI5

1 USC, EPS de Ingeniería, 27002 Lugo (SP)
2 CREA, Viale XXVIII Aprile 26 – 31015, Conegliano, Treviso (IT)
3 IFV Domaine de l’Espiguette – 30240, Le Grau Du Roi (FR)
4 FEUGA Rúa Lope Gómez de Marzoa s/n – 15705 Santiago de Compostela (SP)
5 HORTA S.r.l. Via Egidio Gorra 55 – 29122, Piacenza (IT)

Contact the author

Keywords

grapevine, virus, e-learning, field training

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

How different SO2 doses impact amino acid and volatile profile of white wines

Sulphur dioxide (SO2) is a well-established preservative in the wine industry. Its ability to act in different stages of the process as an antioxidant and an antiseptic as main characteristics makes it versatile. However, the need for its reduction or even its replacement has been increasing by the regulatory authorities as well as by the final consumer. To understand the impact of SO2 during ageing on volatile organic compounds (VOCs) and amino acids (AAs) profiles, two white wines (one varietal and one blend) were aged under the same conditions, in the presence of different doses of SO2. After fermentation (t=0), 0, 30, 60, 90 and 120 mg/L of SO2 were applied, wines were kept over lees for 3 months (t=3), then were bottled after 3 (t=6) and 9 (t=12) months.

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of valpolicella aroma ‘terroir’

AIM: Valpolicella is a renowned Italian wine-producing region (Paronetto, 1981). Wines produced in its different sub-regions are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.

Characterization of vine performance using remote sensing tools

Today, a variety of remote sensing tools are used to characterise plant performance. However, the vine is rarely studied, as a major crop specificity is canopy discontinuity. Registered images of the vineyard are anisotropic, therefore difficult to analyse.

Pioneering dynamic AgriVoltaics in viticulture: enhancing grapevine productivity, wine quality and climate protection through agronomical steering in a large-scale field study

Context and purpose of the study. Climate change threatens traditional winegrowing regions, with about 90% of areas like southern France at risk by the end of the century due to heatwaves and droughts.