GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Testing the pathogen e-learning and field training course on grapevine virus knowledge and management

Testing the pathogen e-learning and field training course on grapevine virus knowledge and management

Abstract

Context and purpose of the study – One of the reasons of the spread of grapevine virus diseases in vineyards around the world is the lack of knowledge by the main actors of the wine sector. To face this problem, five partners worked together to develop the PAThOGEN project, a training program aimed to improve grapevine virus knowledge and management. The partnership gathers one French technical center (IFV), one Spanish university (USC), one Italian applied research center (CREA), one Spanish foundation specialized in training and technology transfer (FEUGA) and one Italian SME specialized in the development of informatics tools and in knowledge transfer (HORTA).The objectives of PAThOGEN are: (i) to develop and maintain a high-quality work-based Vocational and Education Training program, (ii) to improve the skills of professionals of the wine sector.

Material and methods – The PAThOGEN training is the result of a project co-funded by the Erasmus+ Program of the European Union (2015-1FR1-KA202-015329). The e-learning training was developed in two levels (BASIC and ADVANCED) and four languages (English, French, Spanish and Italian); the training is completed with two practical sessions in the field, one in spring and one in autumn. The contents and platform were evaluated by the partners, an external evaluator and an advisory board of wine technicians from the 3 partner countries to ensure that the content proposed for the courses corresponded to the needs of the professionals of the sector. Once this step was validated, the pilot courses were available online, and groups of “student-testers” were selected in the 3 countries from different professional categories (technicians, winegrowers, nurserymen, students, teachers, phytosanitary official services…). Throughout the process of developing the courses, the advisors and students assessment has been essential to getting a demand-driven training.

Results – In the 3 countries, 128 people have tested the online courses. A very large majority (98%) considered the PATHOGEN program as an “interesting” or “very interesting” training course. The field sessions were crucial to finalize the training and were well appreciated by students because they allowed them to identify the symptoms of virus diseases in vivo (94% of the students had a “very good impression” concerning the field session). The detailed evaluations allowed us to rework the courses both in terms of content (simplification, clarity of information…) and functionality of the platform (speed of animations, quality of audio, sharpness of photos…). We have therefore improved the 8 versions of the courses (4 languages, 2 levels) taking these remarks into account and they are currently available at www.pathogenproject.eu

DOI:

Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Julián GARCÍA-BERRIOS1, Elisa ANGELINI2, Cristina CABALEIRO1, Anne-Sophie SPILMONT3, Daniel DURÁN4, Tiziano BETTATI5

1 USC, EPS de Ingeniería, 27002 Lugo (SP)
2 CREA, Viale XXVIII Aprile 26 – 31015, Conegliano, Treviso (IT)
3 IFV Domaine de l’Espiguette – 30240, Le Grau Du Roi (FR)
4 FEUGA Rúa Lope Gómez de Marzoa s/n – 15705 Santiago de Compostela (SP)
5 HORTA S.r.l. Via Egidio Gorra 55 – 29122, Piacenza (IT)

Contact the author

Keywords

grapevine, virus, e-learning, field training

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The adaptation and resilience of scions and rootstocks to water constraint

The ability of grapevine cultivars and rootstocks to cope with and adapt to recurring water constraints is the focus of this study. The contribution of intrinsic (epigenetic) and extrinsic (rootzone microbial community) factors to water stress resilience will be discussed. The study was conducted in a validated model vineyard where three scion cultivars (Pinotage, Shiraz, and Cabernet Sauvignon) on two rootstocks (Richter 110 and USVIT8-7) grow under recurring seasonal water constraint (and control) scenarios since planting (in 2020). Comprehensive profiling of the site, soil, atmospheric conditions, plants, and their physiological responses provide contextual data for the analyses conducted.

Climate change projections to support the transition to climate-smart viticulture

The Earth’s system is undergoing major changes through a wide range of spatial and temporal scales as a response to growing anthropogenic radiative forcing, which is pushing the whole system far beyond its natural variability. Sources of greenhouse gases largely exceed their sinks, thus leading to a strengthened greenhouse effect. More energy is thereby being supplied to the system, with inevitable shifts in climatic patterns and weather regimes. Over the last decades, these modifications have been manifested in the full statistical distributions of the atmospheric variables, with dramatic changes in the frequency and intensity of extremes. Natural hazards, such as severe droughts, floods, forest fires, or heatwaves, are being triggered by extreme atmospheric events worldwide, thus threatening human activities. Viticultculture is not only exposed to changing climates but is also highly vulnerable, as grapevine phenology and physiological development are strongly controlled by atmospheric conditions. Therefore, the assessment of climate change projections for a given region is critical for climate change adaptation and risk reduction in viticulture. By adopting timely and suitable measures, the future sustainability and resiliency of the sector can be fostered. Climate-grapevine chain modelling is an essential tool for better planning and management. However, the accuracy of the resulting projections is limited by many uncertainties that must be duly taken into account when transferring knowledge to stakeholders and decision-makers. Climate-smart viticulture will comprise ensembles of locally tuned strategies, envisioning both adaptation and mitigation, assisted by emerging technologies and decision-support systems.

Effects of graft quality on growth and grapevine-water relations

Climate change is challenging viticulture worldwide compromising its sustainability due to warmer temperatures and the increased frequency of extreme events. Grafting Vitis vinifera L.

The use of local knowledge relating to vineyard performance to identify viticultural terroirs in Stellenbosch and surrounds

A terroir represents grouping of homogenous environmental units, or natural terroir units, based on the typicality of the products obtained. Identification and characterisation of terroirs depends on knowledge of environmental parameters, the functioning of the grapevine and characteristics of the final product, which must be placed in a spatial context.

Rationalising the impact of time, light, temperature, and oxygen on the evolution of rosé wines by means of a surface response methodology approach

The widespread use of flint glass bottles for rosé wines is driven by consumer preference for color as a key choice factor.