OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Foamability of bentonite treated wines: impact of new acacia gum fractions obtained by ionic exchange chromatography (IEC)

Foamability of bentonite treated wines: impact of new acacia gum fractions obtained by ionic exchange chromatography (IEC)

Abstract

Foam is a key aspect of quality of sparkling wines. Bentonite is usually added to the wine to prevent protein haze, but reducing its foamability [1]. New skills are searching to avoid this undesirable event [2]. Acacia senegal gum (Asen) is an exudate from Acacia trees, which can be used to stabilize red wine color. Asen can be fractionated, and the most widely used method is Hydrophobic Interaction Chromatography (HIC) to obtain low (HIC-F1), medium (HIC-F2) and high (HIC-F3) molar mass fractions. The effect of these fractions on the foamability of bentonite-treated wines was studied, showing positive or negative effects depending on the fraction and the wine [3].

Asen can also be fractionated by Ion Exchange Chromatography (IEC) giving a high (IEC-F1) and low (IEC-F2) molar mass fractions [4]. A synthetic wine (SYWI) was prepared (12 % v/v ethanol, 3 g·L-1 of tartaric acid). 8 base wines from Spain (3) and France (5) were made by the traditional white winemaking method. They were treated with bentonite (20 g·hL-1), stirred gently for a few hours, kept in cold storage (10 days, 4 °C), racked and filtered (1 μm). IEC-fractions were added to SYWI (60 g·hL-1) and to wines (30 and 10 g·hL-1). The foaming parameters were compared by shake test and by a classical gas-sparging method (Mosalux), being the qualitative aspect of foam also observed.

In SYWI, IEC-F1 improves the foamability during the total shake test. Both fractions enhance its Maximum Foam Height (HM) and the Foam Stability Height at 5 minutes (HS) measured by Mosalux. IEC-F1 provides less compact foam with larger bubble. In Spanish wines, IEC-F1 increases the foamability during the total shake test. IEC-F1 also improves it in French wines, but weaker and differently depending on the wine. The foamability is punctually enhanced by IEC-F2 in some wines, but it is greatly decreased in 1 French wine. The dose reduction decreases the improving impact of IEC-F1 on the foamability of the French selected wine but not in the Spanish selected wine. IEC-F1 increases HM and HS in both selected wines, whereas IEC-F2 improves HS only in the Spanish selected wine.

Concluding, the addition of IEC-F1 increases foamability for all the studied wines, but very differently depending on the wine. IEC-F2 addition shows positive, neutral or even negative effects depending on the wine. Dose of IEC-F1 may also play a key role depending on the wine.

References:

[1] Marchal et al. J. Agric. Food Chem., 2002, 50, 1420
[2] Martí-Raga et al. J. Agric. Food Chem., 2016, 96, 4962
[3] Apolinar-Valiente et al. J. Agric. Food Chem., Under Review
[4] Apolinar-Valiente et al. Food Hydrocoll., 2019, 89, 864

 

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Rafael Apolinar-Valiente (1), Pascale Williams (2), Thomas Salmon (3), Michaël Nigen (1), Christian Sanchez (1), Richard Marchal (3), Thierry Doco (2)

(1) UMR 1208 Ingénierie des Agropolymères et Technologies Emergentes, Université de Montpellier2, CIRAD, Montpellier SupAgro, INRA, Montpellier
(2) UMR 1083 Sciences Pour l’OEnologie, Montpellier SupAgro, INRA, Université de Montpellier2, Montpellier, France
(3) Laboratoire d’Oenologie et Chimie Appliquée, Université de Reims, Reims, France

Contact the author

Keywords

Acacia senegal gum, sparkling wine, Ionic Exchange Chromatography , foamability

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Does spotted lanternfly phloem-feeding have downstream effects on wine volatiles? Preliminary insights into compositional shifts

The Spotted lanternfly (SLF), first detected in the U.S. in 2014, is an invasive phloem-feeding planthopper that poses a growing threat to grape and wine production in the U.S. In Pennsylvania, where it was first detected, reductions in grapevine production and fruit quality have been reported by commercial growers. Recent advances have begun to elucidate how SLF affects grapevine physiology and resource allocation, but no research has identified how SLF affects wine chemical composition and quality. Documented reductions in fruit sugar allocation due to heavy SLF phloem-feeding may have downstream effects on wine fermentation dynamics. Additionally, secondary metabolic responses stimulated by SLF may also influence berry chemical composition. The present study investigated SLF-mediated effects on wine composition through analysis of the volatile composition of wines produced from white- and red-fruited varieties of different Vitis parentage (e.g., Vitis vinifera vs. interspecific hybrids) following prolonged exposure to adult SLF phloem-feeding.

Différenciation de parcelles de Chenin du Val de Loire, a l’aide de l’etude des flores fongiques des raisins, en utilisant l’outil DGGE

Depuis le millésime 2002, une étude est menée sur la diversité de la flore fongique de parcelles du cépage chenin, situées essentiellement sur les appellations de Vouvray et Montlouis ; deux appellations séparées par le fleuve nommé la Loire. Les parcelles se situent dans des conditions pédoclimatiques différentes, qui se retrouvent au travers des suivis de maturité et l’état sanitaire.

The myth of the universal rootstock revisited: assessment of the importance of interactions between scion and rootstock

Aim‐ Rootstocks provide protection against soil borne pests and are a powerful tool to manipulate growth, fruit composition and wine quality attributes

Effet de l’ombrage respectif des ceps et des grappes de Muscat sur leurs teneurs en composés volatils libres et glycosyles et en précurseurs d’aromes carotenoïdiques

Le Muscat de Frontignan est bien connu pour ses fortes teneurs en composés terpéniques et par l’odeur florale et fruitée que ces composés confèrent aux vins qui en sont issus (1,2).

Developing an integrated viticulture in the upper part of the hill Somló

The hill Somló looks like a huge island wich jumps out of the see, a few kilometers away from the slope of Bakony highland and on the edge of the Hungarian small plane.