OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Foamability of bentonite treated wines: impact of new acacia gum fractions obtained by ionic exchange chromatography (IEC)

Foamability of bentonite treated wines: impact of new acacia gum fractions obtained by ionic exchange chromatography (IEC)

Abstract

Foam is a key aspect of quality of sparkling wines. Bentonite is usually added to the wine to prevent protein haze, but reducing its foamability [1]. New skills are searching to avoid this undesirable event [2]. Acacia senegal gum (Asen) is an exudate from Acacia trees, which can be used to stabilize red wine color. Asen can be fractionated, and the most widely used method is Hydrophobic Interaction Chromatography (HIC) to obtain low (HIC-F1), medium (HIC-F2) and high (HIC-F3) molar mass fractions. The effect of these fractions on the foamability of bentonite-treated wines was studied, showing positive or negative effects depending on the fraction and the wine [3].

Asen can also be fractionated by Ion Exchange Chromatography (IEC) giving a high (IEC-F1) and low (IEC-F2) molar mass fractions [4]. A synthetic wine (SYWI) was prepared (12 % v/v ethanol, 3 g·L-1 of tartaric acid). 8 base wines from Spain (3) and France (5) were made by the traditional white winemaking method. They were treated with bentonite (20 g·hL-1), stirred gently for a few hours, kept in cold storage (10 days, 4 °C), racked and filtered (1 μm). IEC-fractions were added to SYWI (60 g·hL-1) and to wines (30 and 10 g·hL-1). The foaming parameters were compared by shake test and by a classical gas-sparging method (Mosalux), being the qualitative aspect of foam also observed.

In SYWI, IEC-F1 improves the foamability during the total shake test. Both fractions enhance its Maximum Foam Height (HM) and the Foam Stability Height at 5 minutes (HS) measured by Mosalux. IEC-F1 provides less compact foam with larger bubble. In Spanish wines, IEC-F1 increases the foamability during the total shake test. IEC-F1 also improves it in French wines, but weaker and differently depending on the wine. The foamability is punctually enhanced by IEC-F2 in some wines, but it is greatly decreased in 1 French wine. The dose reduction decreases the improving impact of IEC-F1 on the foamability of the French selected wine but not in the Spanish selected wine. IEC-F1 increases HM and HS in both selected wines, whereas IEC-F2 improves HS only in the Spanish selected wine.

Concluding, the addition of IEC-F1 increases foamability for all the studied wines, but very differently depending on the wine. IEC-F2 addition shows positive, neutral or even negative effects depending on the wine. Dose of IEC-F1 may also play a key role depending on the wine.

References:

[1] Marchal et al. J. Agric. Food Chem., 2002, 50, 1420
[2] Martí-Raga et al. J. Agric. Food Chem., 2016, 96, 4962
[3] Apolinar-Valiente et al. J. Agric. Food Chem., Under Review
[4] Apolinar-Valiente et al. Food Hydrocoll., 2019, 89, 864

 

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Rafael Apolinar-Valiente (1), Pascale Williams (2), Thomas Salmon (3), Michaël Nigen (1), Christian Sanchez (1), Richard Marchal (3), Thierry Doco (2)

(1) UMR 1208 Ingénierie des Agropolymères et Technologies Emergentes, Université de Montpellier2, CIRAD, Montpellier SupAgro, INRA, Montpellier
(2) UMR 1083 Sciences Pour l’OEnologie, Montpellier SupAgro, INRA, Université de Montpellier2, Montpellier, France
(3) Laboratoire d’Oenologie et Chimie Appliquée, Université de Reims, Reims, France

Contact the author

Keywords

Acacia senegal gum, sparkling wine, Ionic Exchange Chromatography , foamability

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

1H-NMR-based Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

The aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through untargeted and targeted 1H-NMR metabolomics. One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz. The spectra were recorded by applying the NOESYGPPS1D pulse sequency, to achieve water and ethanol signals suppression. No modification of the pH was performed to avoid any chemical alteration of the matrix. The generation of input variables for untargeted analysis was done via bucketing the spectra. The resulting dataset was preprocessed prior to perform unsupervised PCA, by means of MetaboAnalyst web-based tool suite. The identification of compounds for the targeted analysis was performed by comparison to pure compounds spectra by means of SMA plug-in of MNova 14.2.3 software. The dataset containing the concentrations (%) of identified compounds was subjected to one-way analysis of variance (ANOVA) to highlight significant differences among the wines. The untargeted analysis, carried out through the PCA, revealed a clear differentiation among the wines. The fragments of the spectra contributing mostly to the separation were attributed to flavonoids, aroma compounds and amino acids. The targeted analysis leaded to the identification of 68 compounds, whose concentrations were significant different among the wines. The results were related to soils physical-chemical analysis and showed that: 1) high concentrations of flavan-3-ols and flavonols are correlated with high clay content in soils; 2) high concentrations of anthocyanins, amino acids, and aroma compounds are correlated with neutral and moderately alkaline soil pH; 3) low concentrations of flavonoids and aroma compounds are correlated with high soil organic matter content and acidic pH. The 1H-NMR metabolomic analysis proved to be an excellent tool to discriminate between wines originating from grapes grown on different soil types and revealed that soils in the Mediterranean area exert a strong impact on the chemical composition of the wines.

Influence of pre-fermentative steps on varietal thiol precursors

The content of 3-sulfanyl-1-hexanol and its acetate ester in wine is affected by a number of factors, including the concentration of its precursors S-3-(hexan-1-ol)-L-glutathione (G-3SH),

Gastrointestinal digestion of wine sulphites and their effects on human gut microbiota

Sulphites are by far the most widely used additive in the wine industry. In relation to health, the interaction of sulphites with the gut microbiota has not been addressed so far. Following the consumption of wine and other sulphite-containing foods, the gastrointestinal tract and the microbiome are one of the first barriers that these compounds face in the human organism. In this study, we used a previously validated gastrointestinal digestion model (SIMGI®) [1,2] to evaluate the effect of intestinal digestion of wine sulphites on the gut microbiome.

The smoking gun of climate change in wines

In this audio recording of the IVES science meeting 2022, Antonio Graca (Sogrape, Portugal) speaks about smoke taint and climate change. This presentation is based on an original article accessible for free on IVES Technical Reviews.

DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

Sessile oak and pedunculate oak have shown several differences of interest for enological purposes. Tannic and aromatic composition among sessile oak or pedonculate oak has been well studied. Sessile oak is generally more aromatic than pedunculated, while the later is more tannic. This scientific point of view is rarely applied to classify oak in cooperages. Most coopers use the type of grain to distinguish wide and thin grain.