OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Foamability of bentonite treated wines: impact of new acacia gum fractions obtained by ionic exchange chromatography (IEC)

Foamability of bentonite treated wines: impact of new acacia gum fractions obtained by ionic exchange chromatography (IEC)

Abstract

Foam is a key aspect of quality of sparkling wines. Bentonite is usually added to the wine to prevent protein haze, but reducing its foamability [1]. New skills are searching to avoid this undesirable event [2]. Acacia senegal gum (Asen) is an exudate from Acacia trees, which can be used to stabilize red wine color. Asen can be fractionated, and the most widely used method is Hydrophobic Interaction Chromatography (HIC) to obtain low (HIC-F1), medium (HIC-F2) and high (HIC-F3) molar mass fractions. The effect of these fractions on the foamability of bentonite-treated wines was studied, showing positive or negative effects depending on the fraction and the wine [3].

Asen can also be fractionated by Ion Exchange Chromatography (IEC) giving a high (IEC-F1) and low (IEC-F2) molar mass fractions [4]. A synthetic wine (SYWI) was prepared (12 % v/v ethanol, 3 g·L-1 of tartaric acid). 8 base wines from Spain (3) and France (5) were made by the traditional white winemaking method. They were treated with bentonite (20 g·hL-1), stirred gently for a few hours, kept in cold storage (10 days, 4 °C), racked and filtered (1 μm). IEC-fractions were added to SYWI (60 g·hL-1) and to wines (30 and 10 g·hL-1). The foaming parameters were compared by shake test and by a classical gas-sparging method (Mosalux), being the qualitative aspect of foam also observed.

In SYWI, IEC-F1 improves the foamability during the total shake test. Both fractions enhance its Maximum Foam Height (HM) and the Foam Stability Height at 5 minutes (HS) measured by Mosalux. IEC-F1 provides less compact foam with larger bubble. In Spanish wines, IEC-F1 increases the foamability during the total shake test. IEC-F1 also improves it in French wines, but weaker and differently depending on the wine. The foamability is punctually enhanced by IEC-F2 in some wines, but it is greatly decreased in 1 French wine. The dose reduction decreases the improving impact of IEC-F1 on the foamability of the French selected wine but not in the Spanish selected wine. IEC-F1 increases HM and HS in both selected wines, whereas IEC-F2 improves HS only in the Spanish selected wine.

Concluding, the addition of IEC-F1 increases foamability for all the studied wines, but very differently depending on the wine. IEC-F2 addition shows positive, neutral or even negative effects depending on the wine. Dose of IEC-F1 may also play a key role depending on the wine.

References:

[1] Marchal et al. J. Agric. Food Chem., 2002, 50, 1420
[2] Martí-Raga et al. J. Agric. Food Chem., 2016, 96, 4962
[3] Apolinar-Valiente et al. J. Agric. Food Chem., Under Review
[4] Apolinar-Valiente et al. Food Hydrocoll., 2019, 89, 864

 

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Rafael Apolinar-Valiente (1), Pascale Williams (2), Thomas Salmon (3), Michaël Nigen (1), Christian Sanchez (1), Richard Marchal (3), Thierry Doco (2)

(1) UMR 1208 Ingénierie des Agropolymères et Technologies Emergentes, Université de Montpellier2, CIRAD, Montpellier SupAgro, INRA, Montpellier
(2) UMR 1083 Sciences Pour l’OEnologie, Montpellier SupAgro, INRA, Université de Montpellier2, Montpellier, France
(3) Laboratoire d’Oenologie et Chimie Appliquée, Université de Reims, Reims, France

Contact the author

Keywords

Acacia senegal gum, sparkling wine, Ionic Exchange Chromatography , foamability

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Dimethyl sulfide: a compound of interest from grape to wine glass

The overall quality of fine wines is linked to the development of “bouquet” during wine bottle ageing1. Several chemical reactions, occurring in atmosphere protected from oxygen, are favourable to the formation and preservation of sulphur compounds such as dimethyl sulfide (DMS). DMS accumulate in wines thanks to hydrolysis of its precursors (DMSp) mainly constituted by S-

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Tropical fruit aroma in white wines: the role of fermentation esters and volatile thiols

Volatile thiols are impact aroma compounds, well-known in the literature for imparting tropical fruit aromas such as passion fruit, guava, grapefruit, and citrus in white wines [1]. More recent evidence suggests that tropical fruit aromas are also caused by other aroma compounds besides thiols, such as fermentation esters, or the interaction between these volatile families. Therefore, the objective of this study was to investigate the effects of combining esters and/or thiols to determine their impact on the fruitiness aroma perception of white wines. Pinot gris wine was produced at the OSU research winery and was dearomatized using Lichrolut® EN. Combinations of fermentation volatile compounds were added to the wine, forming the aroma base. Treatment wines were composed of additions of different concentrations and combinations of thiols and/or esters. Samples were subjected to sensory analysis where forty-six white wine consumers evaluated the orthonasal aroma of the wines and participated in Check-All-That-Apply (CATA).

Sensory evaluation of the effect of anthocyanins on in-mouth perceptions

In this audio recording of the IVES science meeting 2022, Maria Paissoni (Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy) speaks about sensory evaluation of the effect of anthocyanins on in-mouth perceptions. This presentation is based on an original article accessible for free on OENO One.

The chances for using non-saccharomyces wine yeasts for a sustainable winemaking

Climate changes and the trend towards organic and more sustainable winemaking highlighted the need to use biological methodologies. The reduction in the use of SO2, the need of the reduction of ethanol content of wines and the now need to reduce or eliminate chemical phytosanitary products, have prompted the search for alternative practices.