OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Foamability of bentonite treated wines: impact of new acacia gum fractions obtained by ionic exchange chromatography (IEC)

Foamability of bentonite treated wines: impact of new acacia gum fractions obtained by ionic exchange chromatography (IEC)

Abstract

Foam is a key aspect of quality of sparkling wines. Bentonite is usually added to the wine to prevent protein haze, but reducing its foamability [1]. New skills are searching to avoid this undesirable event [2]. Acacia senegal gum (Asen) is an exudate from Acacia trees, which can be used to stabilize red wine color. Asen can be fractionated, and the most widely used method is Hydrophobic Interaction Chromatography (HIC) to obtain low (HIC-F1), medium (HIC-F2) and high (HIC-F3) molar mass fractions. The effect of these fractions on the foamability of bentonite-treated wines was studied, showing positive or negative effects depending on the fraction and the wine [3].

Asen can also be fractionated by Ion Exchange Chromatography (IEC) giving a high (IEC-F1) and low (IEC-F2) molar mass fractions [4]. A synthetic wine (SYWI) was prepared (12 % v/v ethanol, 3 g·L-1 of tartaric acid). 8 base wines from Spain (3) and France (5) were made by the traditional white winemaking method. They were treated with bentonite (20 g·hL-1), stirred gently for a few hours, kept in cold storage (10 days, 4 °C), racked and filtered (1 μm). IEC-fractions were added to SYWI (60 g·hL-1) and to wines (30 and 10 g·hL-1). The foaming parameters were compared by shake test and by a classical gas-sparging method (Mosalux), being the qualitative aspect of foam also observed.

In SYWI, IEC-F1 improves the foamability during the total shake test. Both fractions enhance its Maximum Foam Height (HM) and the Foam Stability Height at 5 minutes (HS) measured by Mosalux. IEC-F1 provides less compact foam with larger bubble. In Spanish wines, IEC-F1 increases the foamability during the total shake test. IEC-F1 also improves it in French wines, but weaker and differently depending on the wine. The foamability is punctually enhanced by IEC-F2 in some wines, but it is greatly decreased in 1 French wine. The dose reduction decreases the improving impact of IEC-F1 on the foamability of the French selected wine but not in the Spanish selected wine. IEC-F1 increases HM and HS in both selected wines, whereas IEC-F2 improves HS only in the Spanish selected wine.

Concluding, the addition of IEC-F1 increases foamability for all the studied wines, but very differently depending on the wine. IEC-F2 addition shows positive, neutral or even negative effects depending on the wine. Dose of IEC-F1 may also play a key role depending on the wine.

References:

[1] Marchal et al. J. Agric. Food Chem., 2002, 50, 1420
[2] Martí-Raga et al. J. Agric. Food Chem., 2016, 96, 4962
[3] Apolinar-Valiente et al. J. Agric. Food Chem., Under Review
[4] Apolinar-Valiente et al. Food Hydrocoll., 2019, 89, 864

 

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Rafael Apolinar-Valiente (1), Pascale Williams (2), Thomas Salmon (3), Michaël Nigen (1), Christian Sanchez (1), Richard Marchal (3), Thierry Doco (2)

(1) UMR 1208 Ingénierie des Agropolymères et Technologies Emergentes, Université de Montpellier2, CIRAD, Montpellier SupAgro, INRA, Montpellier
(2) UMR 1083 Sciences Pour l’OEnologie, Montpellier SupAgro, INRA, Université de Montpellier2, Montpellier, France
(3) Laboratoire d’Oenologie et Chimie Appliquée, Université de Reims, Reims, France

Contact the author

Keywords

Acacia senegal gum, sparkling wine, Ionic Exchange Chromatography , foamability

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.

The state of the climate

The climate has warmed over the past century or more bringing about changes in numerous aspects in both earth and human systems

Selecting varieties best adapted to current and future climate conditions based on ripening traits

Aim: The aim of this study was to quantify key berry sugar accumulation traits and characterize their plasticity in response to climate variation from data collected from different cultivars over seven years from an experimental vineyard.

100 guardians for 100 vines

G.r.a.s.p.o. Is not only the acronym for gruppo di ricerca per la salvaguardia e preservazione dell’originalità viticola di ogni territorio (‘research group for the safeguard and preservation of the originality of every territory’s grapes’), and is not just the italian synonym for ‘raspo’ (‘peduncle’) as treccani dictionary mentions: in the veneto dialect it is the whole bunch of grapes.

Mapping climate and bioclimatic indices at high-resolution in vineyard regions

Many of the world’s vineyard regions are located in regions of complex terrain, with the result there is significant local climate variation.