OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Foamability of bentonite treated wines: impact of new acacia gum fractions obtained by ionic exchange chromatography (IEC)

Foamability of bentonite treated wines: impact of new acacia gum fractions obtained by ionic exchange chromatography (IEC)

Abstract

Foam is a key aspect of quality of sparkling wines. Bentonite is usually added to the wine to prevent protein haze, but reducing its foamability [1]. New skills are searching to avoid this undesirable event [2]. Acacia senegal gum (Asen) is an exudate from Acacia trees, which can be used to stabilize red wine color. Asen can be fractionated, and the most widely used method is Hydrophobic Interaction Chromatography (HIC) to obtain low (HIC-F1), medium (HIC-F2) and high (HIC-F3) molar mass fractions. The effect of these fractions on the foamability of bentonite-treated wines was studied, showing positive or negative effects depending on the fraction and the wine [3].

Asen can also be fractionated by Ion Exchange Chromatography (IEC) giving a high (IEC-F1) and low (IEC-F2) molar mass fractions [4]. A synthetic wine (SYWI) was prepared (12 % v/v ethanol, 3 g·L-1 of tartaric acid). 8 base wines from Spain (3) and France (5) were made by the traditional white winemaking method. They were treated with bentonite (20 g·hL-1), stirred gently for a few hours, kept in cold storage (10 days, 4 °C), racked and filtered (1 μm). IEC-fractions were added to SYWI (60 g·hL-1) and to wines (30 and 10 g·hL-1). The foaming parameters were compared by shake test and by a classical gas-sparging method (Mosalux), being the qualitative aspect of foam also observed.

In SYWI, IEC-F1 improves the foamability during the total shake test. Both fractions enhance its Maximum Foam Height (HM) and the Foam Stability Height at 5 minutes (HS) measured by Mosalux. IEC-F1 provides less compact foam with larger bubble. In Spanish wines, IEC-F1 increases the foamability during the total shake test. IEC-F1 also improves it in French wines, but weaker and differently depending on the wine. The foamability is punctually enhanced by IEC-F2 in some wines, but it is greatly decreased in 1 French wine. The dose reduction decreases the improving impact of IEC-F1 on the foamability of the French selected wine but not in the Spanish selected wine. IEC-F1 increases HM and HS in both selected wines, whereas IEC-F2 improves HS only in the Spanish selected wine.

Concluding, the addition of IEC-F1 increases foamability for all the studied wines, but very differently depending on the wine. IEC-F2 addition shows positive, neutral or even negative effects depending on the wine. Dose of IEC-F1 may also play a key role depending on the wine.

References:

[1] Marchal et al. J. Agric. Food Chem., 2002, 50, 1420
[2] Martí-Raga et al. J. Agric. Food Chem., 2016, 96, 4962
[3] Apolinar-Valiente et al. J. Agric. Food Chem., Under Review
[4] Apolinar-Valiente et al. Food Hydrocoll., 2019, 89, 864

 

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Rafael Apolinar-Valiente (1), Pascale Williams (2), Thomas Salmon (3), Michaël Nigen (1), Christian Sanchez (1), Richard Marchal (3), Thierry Doco (2)

(1) UMR 1208 Ingénierie des Agropolymères et Technologies Emergentes, Université de Montpellier2, CIRAD, Montpellier SupAgro, INRA, Montpellier
(2) UMR 1083 Sciences Pour l’OEnologie, Montpellier SupAgro, INRA, Université de Montpellier2, Montpellier, France
(3) Laboratoire d’Oenologie et Chimie Appliquée, Université de Reims, Reims, France

Contact the author

Keywords

Acacia senegal gum, sparkling wine, Ionic Exchange Chromatography , foamability

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

Koshu is one of the indigenous grape variety that has been grown in Japan for more than one thousand years. Recent research showed that it has 70% of Vitis vinifera genes. In 2010, the Koshu variety was included in ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine’ and has further fueled its popularity in Japan. It is the most cultivated variety for winemaking in Japan.
Koshu berries have light purple skins. The variety is mainly used to produce white wines such as an aromatic wine and a wine produced by sur lie method although various styles are produced.

Investigating perceptual interactions of fruity aromas in Bordeaux red wines through addition and reconstitution sensory studies

Fruity aromas, characterized by red and black fruit descriptors, are central to the identity of Bordeaux red wines [1,2]. Despite extensive research focused on identifying and quantifying volatile compounds that contribute to fruity aromas in wine, the mechanisms underlying their interactions and sensory perception remain poorly understood [3].

Impact of glutathione-rich inactivated yeast on wine chemical diversity

Glutathione-rich inactivated dry yeasts (GSH-IDY) are claimed to accumulate intracellularly and then release glutathione in the must.

Stability of 3-mercaptohexanol during white wine storage in relationship to must pre-fermentative fining

3-Mercaptohexanol (3MH) is a volatile thiol occurring in several white and red wines, where it can contribute to fruity attributes. Its content is typically high in wines from certain grape varieties, in particular Sauvignon blanc, where it is considered a varietal marker. The strong nucleophilic character of thiols makes 3MH rather unstable during wine storage, due to the presence of several strong electrophilic species. Among these electrophilics, those arising from the oxidation of flavan3-ols such as catechin and epi-catechin have been indicated as critical for 3MH stability. Accordingly, there is a generalized interest towards the ability of vinification practices to reduce 3MH loss during aging through the management of wine flavan-3-ols content.

Les propriétés de réflectance du sol de la parcelle sont à considerer comme des paramètres du terroir

Suite à des expérimentations de solarisation artificielle réalisées en 1999 en conditions réelles de culture, à partir de matériels réfléchissants partiellement colorés en vert, en bleu