Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Ancient and recent construction of Terroirs 9 How the physical components of the terroir can differently intervene in French wines DPO definitions.Example of Côte de Nuits in Burgundy

How the physical components of the terroir can differently intervene in French wines DPO definitions.Example of Côte de Nuits in Burgundy

Abstract

European regulations describe what elements must be given in the specifications of DPO determination ; mainly production conditions, links between quality and products characteristics and the physical traits of the production area. These elements are given in the “link to terroir” paragraph relating natural and human factors, detailed product characteristics linked to the geographical area and at last interactions between product originality and the geographical area.
Analysing all these different paragraphs reveals that the relative importance of three aspects (history, namely the delimitated area for grapes harvesting, production know how and production usages) contribute differently according to the wine PDO. Besides, the delimitated area for grapes harvesting (defined as a component of the physical environment by IVO in Tbilissi in 2010) always relies on a precise field by field delimitation inside a larger scale production area. At last, the example “Côte de Nuits” in Burgundy shows that a parallel can be seen between the pyramidal organization of its different PDO and the relative weight of field delimitation in the production conditions.

Publication date: September 21, 2023

Issue: Terroir 2012

Type: Article

Authors

Alain JACQUET1,*, Gilles FLUTET2, Éric VINCENT3, Philippe DOUMENC4

1 Institut National de l’Origine et de la Qualité (INAO) – 6 , rue Fresnel – 14000 Caen – France
2 Institut National de l’Origine et de la Qualité (INAO) – La Jasse de Maurin – 34970 Lattes – France
3 Institut National de l’Origine et de la Qualité (INAO) – 16 Rue du Golf – 21800 Quétigny – France
4 Institut National de l’Origine et de la Qualité (INAO) – Centre Europe – Immeuble Le Palatin – 83400 Hyères – France

Contact the author

Keywords

Link to terroir, field delimitation, protected designation of origin

Tags

IVES Conference Series | Terroir | Terroir 2012

Citation

Related articles…

Evaluating the suitability of hyper- and multispectral imaging to detect endogenic diseases in grapevine

Endogenic diseases often arise from pathogens that exist within the plant tissue, including fungi, bacteria, and viruses, which can remain latent and then emerge under stress conditions or favorable environmental conditions, causing symptoms that weaken vines or can lead to plant death.

Analyse du rôle du terroir dans la définition d’une appellation d’origine

In France, the definition of appellations of origins is entrusted to the Institut National des Appellations d’Origine. (‘NAO). With the increase in price of appellations of origin vine­yards and considering the interests at stake, Institut National des Appellations d’Origine and the Institut National de Recherche Agronomique (INRA) established a work group in 1993 in order to study the “terroir-wine” relationship as precisely as possible, taking into account the knowledge acquired by researchers of the INRA and the experience in the field of the agents of the INAO.

The impact of postharvest cooling of Sauvignon blanc grapes on the sensory profile and the chemical composition of the wines

Rapid processing of grapes after harvest has always been considered essential for achieving a balanced sensory wine profile.

Managing alcohol in sparkling wine production: adjusting harvest timing and utilizing grape juice in “liqueur de tirage”

Context and purpose of the study. Sparkling wine production is majorly impacted by climate change as sugar accumulation and aromatic development in grapes are often decoupled.

Under-vine management effects on grapevine production, soil properties and plant communities in South Australia

Under-vine (UV) management has traditionally consisted of synthetic herbicide use to limit competition between weeds and grapevines. With growing global interest towards non-synthetic chemical use, this study aimed to capture the effects of alternative UV management at two commercial Shiraz vineyards in South Australia, where the sole management variables were UV management since 2016. In adjacent treatment blocks, cultivation (CU) was compared to spontaneous vegetation (SV) in McLaren Vale (MV), and herbicide was compared to SV in Eden Valley (EV). Soil water infiltration rates were slower and grapevine stem water potential was lower in CU compared to SV in MV, with the latter having a plant community dominated by soursob (Oxalis pes-caprae) during winter; while in EV, there was little separation between the treatments. Yields were affected at both sites, with SV being higher in MV and HE being higher in EV. In MV, the only effect on grape must was a lower 13C:12C isotope ratio in CU, indicating greater grapevine water stress. In the grape must at EV, SV had higher total soluble solids, total phenolics, anthocyanins, and yeast available nitrogen; and lower pH and titratable acidity. Pruning weights were not affected by the treatments in MV, while they were higher in HE at EV. Assessments revealed that the differing soil types at the two sites were likely the main determinants of the opposing production outcomes associated with UV management. In the silty loam soil of MV, the higher yields in SV were likely due to more plant-available water, as a potential result of the continuous soil bio-pores formed by winter UV vegetation. Conversely, in the loamy sand soils of EV with a lower cation exchange capacity, the lower yields and pruning weights in SV suggest the UV vegetation competed significantly with the grapevines for available water and nutrients.