Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Ancient and recent construction of Terroirs 9 AOC valorization of terroir nuances at plot scale in Burgundy

AOC valorization of terroir nuances at plot scale in Burgundy

Abstract

In the highly competitive global wine market, Burgundy has a long-established reputation to maintain. The vine and wine sector in Burgundy is based on a five-level ranking of AOC (Appellation d’Origine Contrôlée) wines and of the plots where the grapes are grown. In Burgundy, climat refers to a lieu-dit with well-defined limits, expressed through a specific wine. For the connoisseur, the unique character of each wine reveals the astonishing diversity of climats.
This situation is not static: an ODG (Organisme de Défense et Gestion) for an AOC may ask for plots producing wines with a better reputation than their AOC classification to be upgraded. This procedure will give official status to the renown of these wines and added value to their terroirs. Such applications must meet the requirements set by the INAO (Institut National de l’Origine et de la Qualité) at regional and national scales.
Upgrading will depend on specific criteria: historical precedence, economic factors, and physical-geographical aspects. The classification of a climat depends on the notoriety of the wine it produces (historical recognition, commercial impact, and price) and then on its terroir. Environmental analysis of the plots in the climat is performed using a Digital Terrain Model to characterise physiographic parameters (altitude, slope, and exposure) and geological mapping to depict the mosaic of soil and subsoil. Price trends when plots are sold provide useful insights into terroir quality. New entities can be accurately delineated since these tools are perfectly adapted to the fine scale of Burgundy climats. A detailed reading of the landscape and the promotional discourse of wine are thus facilitated.
Several applications have already been successful; others are still in the initial stages, while some exist in draft form, or have already been submitted. These classification changes contribute to the valorisation at plot scale of the myriad of terroir nuances in the Burgundy vineyards.

Publication date: September 25, 2023

Issue: Terroir 2012

Type: Article

Authors

Marie-Claude PICHERY1*, Françoise VANNIER-PETIT2, Éric VINCENT3
1 Economist – Laboratoire d’Economie et Gestion (UMR CNRS 5118) – PEG BP 26611 – 21066 DIJON Cedex 2 Geologist La Rente Neuve F-21160 FLAVIGNEROT, France 3 Institut National de l’Origine et de la Qualité, 16 rue du golf 21800 QUETIGNY, Fr.

Contact the author

Keywords

terroir, field delimitation, valorization, geological mapping, Burgundy

Tags

IVES Conference Series | Terroir | Terroir 2012

Citation

Related articles…

Le zonage viticole en Italie. État actuel et perspectives futures

Over the past few decades, viticultural research has made numerous contributions which have made it possible to better understand the behavior of the vine as well as its response to the conditions imposed on it by the environment and agronomic practices. However, these results have only rarely been used in the practical management of vineyards because the research has been carried out using partial experimental models where reality is only represented by a few factors which are sometimes even made more complex by the introduction of elements foreign to the existing situation and difficult to apply to production (varieties, methods of cultivation, management techniques, etc.). To these reasons, one could add a low popularization of the results obtained, as well as the difficulty of implementing the scientific contributions, which does not allow the different production systems to fully express their potential. This limit of viticultural research can only be exceeded by the design of integrated projects designed directly on and for the territory. Indeed, only the integrated evaluation of a viticultural agro-system, which can be achieved through zoning, makes it possible to measure, or even attribute to each element of the system, the weight it exerts on the quality of the wine.

Effect of vineyard nitrogen management on Souviginer gris wine sensory quality and aromatic compounds

Fungus-Resistant Grape (FRG) varieties represent a promising approach to address the challenges of climate change and sustainability in viticulture.

Study of intramolecular distribution of hydrogen isotopes in ethanol depending on deuterium content of water and the origin of carbohydrates

The paper presents the results of consistently developing studies carried out in 2022-2024 on the distribution of deuterium 2H(D) in intracellular water of grapes and wine products, taking into account the influence of natural, climatic and technogenic factors using high-resolution quantitative nuclear magnetic resonance spectroscopy 2H(D)-qNMR.

Insights from selected ion flow tube mass spectrometry (SIFT-MS) and chemometrics applied to the quick discrimination of grapevine varieties

Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) is an innovative analytical method based on soft chemical ionization to analyze thecomposition in volatile compounds of a gas phase

Under-vine management effects on grapevine production, soil properties and plant communities in South Australia

Under-vine (UV) management has traditionally consisted of synthetic herbicide use to limit competition between weeds and grapevines. With growing global interest towards non-synthetic chemical use, this study aimed to capture the effects of alternative UV management at two commercial Shiraz vineyards in South Australia, where the sole management variables were UV management since 2016. In adjacent treatment blocks, cultivation (CU) was compared to spontaneous vegetation (SV) in McLaren Vale (MV), and herbicide was compared to SV in Eden Valley (EV). Soil water infiltration rates were slower and grapevine stem water potential was lower in CU compared to SV in MV, with the latter having a plant community dominated by soursob (Oxalis pes-caprae) during winter; while in EV, there was little separation between the treatments. Yields were affected at both sites, with SV being higher in MV and HE being higher in EV. In MV, the only effect on grape must was a lower 13C:12C isotope ratio in CU, indicating greater grapevine water stress. In the grape must at EV, SV had higher total soluble solids, total phenolics, anthocyanins, and yeast available nitrogen; and lower pH and titratable acidity. Pruning weights were not affected by the treatments in MV, while they were higher in HE at EV. Assessments revealed that the differing soil types at the two sites were likely the main determinants of the opposing production outcomes associated with UV management. In the silty loam soil of MV, the higher yields in SV were likely due to more plant-available water, as a potential result of the continuous soil bio-pores formed by winter UV vegetation. Conversely, in the loamy sand soils of EV with a lower cation exchange capacity, the lower yields and pruning weights in SV suggest the UV vegetation competed significantly with the grapevines for available water and nutrients.