Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Ancient and recent construction of Terroirs 9 AOC valorization of terroir nuances at plot scale in Burgundy

AOC valorization of terroir nuances at plot scale in Burgundy

Abstract

In the highly competitive global wine market, Burgundy has a long-established reputation to maintain. The vine and wine sector in Burgundy is based on a five-level ranking of AOC (Appellation d’Origine Contrôlée) wines and of the plots where the grapes are grown. In Burgundy, climat refers to a lieu-dit with well-defined limits, expressed through a specific wine. For the connoisseur, the unique character of each wine reveals the astonishing diversity of climats.
This situation is not static: an ODG (Organisme de Défense et Gestion) for an AOC may ask for plots producing wines with a better reputation than their AOC classification to be upgraded. This procedure will give official status to the renown of these wines and added value to their terroirs. Such applications must meet the requirements set by the INAO (Institut National de l’Origine et de la Qualité) at regional and national scales.
Upgrading will depend on specific criteria: historical precedence, economic factors, and physical-geographical aspects. The classification of a climat depends on the notoriety of the wine it produces (historical recognition, commercial impact, and price) and then on its terroir. Environmental analysis of the plots in the climat is performed using a Digital Terrain Model to characterise physiographic parameters (altitude, slope, and exposure) and geological mapping to depict the mosaic of soil and subsoil. Price trends when plots are sold provide useful insights into terroir quality. New entities can be accurately delineated since these tools are perfectly adapted to the fine scale of Burgundy climats. A detailed reading of the landscape and the promotional discourse of wine are thus facilitated.
Several applications have already been successful; others are still in the initial stages, while some exist in draft form, or have already been submitted. These classification changes contribute to the valorisation at plot scale of the myriad of terroir nuances in the Burgundy vineyards.

Publication date: September 25, 2023

Issue: Terroir 2012

Type: Article

Authors

Marie-Claude PICHERY1*, Françoise VANNIER-PETIT2, Éric VINCENT3
1 Economist – Laboratoire d’Economie et Gestion (UMR CNRS 5118) – PEG BP 26611 – 21066 DIJON Cedex 2 Geologist La Rente Neuve F-21160 FLAVIGNEROT, France 3 Institut National de l’Origine et de la Qualité, 16 rue du golf 21800 QUETIGNY, Fr.

Contact the author

Keywords

terroir, field delimitation, valorization, geological mapping, Burgundy

Tags

IVES Conference Series | Terroir | Terroir 2012

Citation

Related articles…

Vineyard nutrient budget and sampling protocols

Vineyard nutrient management is crucial for reaching production-specific quality standards, yet timely evaluation of nutrient status remains challenging. The existing sampling protocol of collecting vine tissue (leaves and/or petioles) at bloom or veraison is time-consuming. Additionally, this sampling practice is too late for in-season fertilizer applications (e.g. N is applied well before bloom). Therefore alternative early-season protocols are necessary to predict the vine nutrient demand for the upcoming season. The main goals of this project are to 1) optimize existing tissue sampling protocols; 2) determine the amount of nutrients removed at the end of the growing season.

Deciphering the function and regulation of VviEPFL9 paralogs to modulate stomatal density in grapevine through New Genomic Techniques

Stomata are microscopic pores mainly located in leaf epidermis, allowing gas exchanges between plants and atmosphere. Stomatal initiation relies on the transcription factor SPEECHLESS which is mainly regulated by the MAP kinase cascade, in turn controlled by small signaling peptides, the Epidermal Patterning Factors (EPF and EPF-Like), namely EPF1, EPF2 and EPFL9. While EPF1 and EPF2 induce the inhibition of SPEECHLESS, their antagonist, EPFL9, stabilizes it, leading to stomatal formation. In grapevine, there are two paralogs for EPFL9, VviEPFL9-1 and VviEPFL9-2. Despite their structural similarity, it remains unclear whether they are differentially regulated and have distinct roles.

Phloem anatomy traits predict maximum sugar accumulation rates

Heat and water stress can accelerate berry sugar accumulation and lead to excessive sugar-to-acid ratios at harvest, producing bland, overly-alcoholic wines. Selecting grapevines for slower sugar accumulation could help maintain wine quality under future, hotter conditions, but these efforts have been stymied by our limited understanding of the traits determining sugar accumulation rates. Here, we measured traits characterizing the structure and anatomy of the sugar transport system – the phloem – in 16 winegrape cultivars and tested for relationships with sugar accumulation rates and cultivar climate classifications.

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.

Training vineyards resilience to environmental variations by managing vine water use

The challenges of the century for viticulture relate to coping with climate change and the loss of biodiversity in a downturning socio-economic context. Now more than ever, the vine and wine industry needs to be resilient to maintain and ensure a future for its heritage. An innovation of capital importance, in line with recently published research, deals with developing new methods of training our inherited and newly planted vineyards to better withstand environmental variations such as drought and heatwaves but also unevenly distributed rains and temperatures.