GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effect of rootstock and preplant fumigation on plant parasitic nematode development in Washington wine grapes

Effect of rootstock and preplant fumigation on plant parasitic nematode development in Washington wine grapes

Abstract

Context and purpose of the study – In Washington State, the majority of winegrape (Vitis vinifera) vineyards are planted to their own roots. This practice is possible due to the lack of established phylloxera populations, and is preferred due to the ease of retraining after damaging winter cold events. However, own-rooted V. vinifera is generally susceptible to most plant parasitic nematodes that attack grape. In Washington State, management of nematodes is dominated by preplant soil fumigation. One practice that may mitigate economic loss due to nematodes is the adoption of nematode-“resistant” rootstocks. There is little information on the performance of most rootstocks against northern root-knot nematode (Meloidogyne hapla), the main plant-parasitic nematode species in the state, and even less information on dual performance against dagger nematode (Xiphinema sp.).

Material and methods – Partnering with a commercial vineyard, we established a 3 hectare, long-term trial evaluating currently-available rootstocks in 2015, with the intent to continue the trial through vineyard establishment to vineyard production maturity (until 2025). This vineyard was undergoing replanting after 20+ years of production in own-rooted V. vinifera ‘Chardonnay’; the intent of the replant was to maintain vineyard infrastructure, but to manage for plant parasitic nematodes. The rootstocks being evaluated are: 101-14 Mtg, 1103 P, Harmony, Teleki 5C, an own-rooted control, and a self-grafted control. The scion is Chardonnay. All vines were certified through the Washington State Department of Agriculture’s certification program. The rootstock treatments were planted in 4 replicated plots of soil treatments consisting of fumigated (metam sodium through the existing drip irrigation lines), nonfumigated, and nonfumigated inoculated with M. hapla, creating low, moderate, and high nematode pressure locations under which to evaluate rootstock performance.

Results – Preplant fumigation was only effective at reducing M. hapla population densities for the first 6 months after application, yet it reduced densities of Xiphinema for 2 growing seasons. Rootstocks were poor hosts for M. hapla relative to own-rooted V. vinifera, but all were acceptable hosts for Xiphinema sp. Several rootstocks (e.g., Harmony, 101-14, 1103 P) had greater shoot biomass at the end of year 3 (end of the establishment period) compared to own-rooted V. vinifera, indicating that longer-term impacts on vigor is likely a primary driver behind the resistance phenotype these rootstocks impart under nematode feeding pressure. The goal of this project is to understand the long-term performance of rootstocks and the impacts of nematodes on vineyard lifespan in Washington State.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Michelle M. MOYER1*, Katherine EAST1, and Inga ZASADA2

1 Washington State University, Irrigated Agriculture Research and Extension Center, 24106 N. Bunn Rd., Prosser, WA, USA
2 USDA-ARS, Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR, USA

Contact the author

Keywords

rootstock, vineyard establishment, nematodes, preplant fumigation, resistance, tolerance

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Drought stress shapes the fungal microbiome of grapevine leaves: insights from DNA metabarcoding

Drought stress is an increasingly prevalent environmental challenge with implications for grapevine physiology and productivity, as well as for the microbiomes associated with grapevine tissues.

Foldable lyre as an alternative to improve yield and oenological potential of grapes for a sustainable viticulture

Actually, many countries around the world are studying different strategies for adapting winegrowing regions to climate changes, focusing on a sustainable viticulture.

A pragmatic modeling approach to assessing vine water status

Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species.

Distribution analysis of myo and scyllo-inositol in natural grape must

s it is well known, myo and scyllo-inositol are two characteristic sugars of grape must and, for this reason, their quantification has been proposed to control the authenticity of the concentrated and rectificated grape must.

Phenolic composition and physicochemical analysis of wines made with the Syrah grape under double pruning in the Brazilian high-altitude Cerrado

This study explores the growing potential of vitiviniculture in Brazil’s Federal District, an emerging wine region marked by unique climatic conditions and innovative cultivation techniques.