GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effect of rootstock and preplant fumigation on plant parasitic nematode development in Washington wine grapes

Effect of rootstock and preplant fumigation on plant parasitic nematode development in Washington wine grapes

Abstract

Context and purpose of the study – In Washington State, the majority of winegrape (Vitis vinifera) vineyards are planted to their own roots. This practice is possible due to the lack of established phylloxera populations, and is preferred due to the ease of retraining after damaging winter cold events. However, own-rooted V. vinifera is generally susceptible to most plant parasitic nematodes that attack grape. In Washington State, management of nematodes is dominated by preplant soil fumigation. One practice that may mitigate economic loss due to nematodes is the adoption of nematode-“resistant” rootstocks. There is little information on the performance of most rootstocks against northern root-knot nematode (Meloidogyne hapla), the main plant-parasitic nematode species in the state, and even less information on dual performance against dagger nematode (Xiphinema sp.).

Material and methods – Partnering with a commercial vineyard, we established a 3 hectare, long-term trial evaluating currently-available rootstocks in 2015, with the intent to continue the trial through vineyard establishment to vineyard production maturity (until 2025). This vineyard was undergoing replanting after 20+ years of production in own-rooted V. vinifera ‘Chardonnay’; the intent of the replant was to maintain vineyard infrastructure, but to manage for plant parasitic nematodes. The rootstocks being evaluated are: 101-14 Mtg, 1103 P, Harmony, Teleki 5C, an own-rooted control, and a self-grafted control. The scion is Chardonnay. All vines were certified through the Washington State Department of Agriculture’s certification program. The rootstock treatments were planted in 4 replicated plots of soil treatments consisting of fumigated (metam sodium through the existing drip irrigation lines), nonfumigated, and nonfumigated inoculated with M. hapla, creating low, moderate, and high nematode pressure locations under which to evaluate rootstock performance.

Results – Preplant fumigation was only effective at reducing M. hapla population densities for the first 6 months after application, yet it reduced densities of Xiphinema for 2 growing seasons. Rootstocks were poor hosts for M. hapla relative to own-rooted V. vinifera, but all were acceptable hosts for Xiphinema sp. Several rootstocks (e.g., Harmony, 101-14, 1103 P) had greater shoot biomass at the end of year 3 (end of the establishment period) compared to own-rooted V. vinifera, indicating that longer-term impacts on vigor is likely a primary driver behind the resistance phenotype these rootstocks impart under nematode feeding pressure. The goal of this project is to understand the long-term performance of rootstocks and the impacts of nematodes on vineyard lifespan in Washington State.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Michelle M. MOYER1*, Katherine EAST1, and Inga ZASADA2

1 Washington State University, Irrigated Agriculture Research and Extension Center, 24106 N. Bunn Rd., Prosser, WA, USA
2 USDA-ARS, Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR, USA

Contact the author

Keywords

rootstock, vineyard establishment, nematodes, preplant fumigation, resistance, tolerance

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Une procédure de mise à jour des zones AOC

In France, one of INAO missions is to delimit the production area of the « Appellations d’origine contrôlées » (AOC). For wine AOC, the delimitation of plots allows for identifying plots of land that respond to technical criteria of the vine location, criteria adapted in every appellation. Some old delimitations AOC are not in adequacy with their territory. Indeed, in spite the existence of a politic aiming to protect production areas AOC, urbanization, road infrastructure or quarries occupy surfaces classified in AOC today.

Harnessing whole genome sequencing data to predict protein structure and function variation in grapevine

Grapevine (Vitis vinifera) is amongst the world’s most cultivated fruit crops, and of global and economic significance, producing a wide variety of grape-derived products, including wine, and table grapes. The genus Vitis, encompassing approximately 70 naturally occurring inter-fertile species, exhibits extensive genetic and phenotypic diversity, highlighted by the global cultivation of thousands of predominantly Vitis vinifera cultivars. Despite the importance of harnessing its naturally occurring genetic diversity to pursue traits of interest, especially considering the continued and growing demand for sustainable high-quality grape production, the systematic characterization of available functional genetic variants remains limited.

The future of DMS precursors during alcoholic fermentation: impact of yeast assimilable nitrogen levels on the contents of DMSp in young wines

Some red wines develop a “bouquet” during ageing. This complex aroma is linked to quality by wine tasters1. The presence of dimethylsulfide (DMS) in those wines is implicated

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.

La perception des terroirs du vignoble des Coteaux du Layon

On peut être surpris de l’existence d’un vignoble de vins liquoreux, le vignoble des Coteaux du Layon, dans une zone septentrionale à la limite Nord de la culture de qualité de la vigne et ce d’autant plus que le cépage de ce vignoble, le Chenin ou Pineau de la Loire, est un cépage semi tardif. La première explication est à rechercher au niveau des facteurs naturels (données climatiques et géopédologiques) permettant la réalisation de ce type de produit. Il est nécessaire de souligner ici l’importance de chaque paramètre du terroir pris dans im sens large (géopédologique et climatique) et que toute variation de l’un d’entre eux, même non perceptible en première analyse à l’homme, peut avoir des incidences déterminantes sur la qualité des vins.