GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effect of rootstock and preplant fumigation on plant parasitic nematode development in Washington wine grapes

Effect of rootstock and preplant fumigation on plant parasitic nematode development in Washington wine grapes

Abstract

Context and purpose of the study – In Washington State, the majority of winegrape (Vitis vinifera) vineyards are planted to their own roots. This practice is possible due to the lack of established phylloxera populations, and is preferred due to the ease of retraining after damaging winter cold events. However, own-rooted V. vinifera is generally susceptible to most plant parasitic nematodes that attack grape. In Washington State, management of nematodes is dominated by preplant soil fumigation. One practice that may mitigate economic loss due to nematodes is the adoption of nematode-“resistant” rootstocks. There is little information on the performance of most rootstocks against northern root-knot nematode (Meloidogyne hapla), the main plant-parasitic nematode species in the state, and even less information on dual performance against dagger nematode (Xiphinema sp.).

Material and methods – Partnering with a commercial vineyard, we established a 3 hectare, long-term trial evaluating currently-available rootstocks in 2015, with the intent to continue the trial through vineyard establishment to vineyard production maturity (until 2025). This vineyard was undergoing replanting after 20+ years of production in own-rooted V. vinifera ‘Chardonnay’; the intent of the replant was to maintain vineyard infrastructure, but to manage for plant parasitic nematodes. The rootstocks being evaluated are: 101-14 Mtg, 1103 P, Harmony, Teleki 5C, an own-rooted control, and a self-grafted control. The scion is Chardonnay. All vines were certified through the Washington State Department of Agriculture’s certification program. The rootstock treatments were planted in 4 replicated plots of soil treatments consisting of fumigated (metam sodium through the existing drip irrigation lines), nonfumigated, and nonfumigated inoculated with M. hapla, creating low, moderate, and high nematode pressure locations under which to evaluate rootstock performance.

Results – Preplant fumigation was only effective at reducing M. hapla population densities for the first 6 months after application, yet it reduced densities of Xiphinema for 2 growing seasons. Rootstocks were poor hosts for M. hapla relative to own-rooted V. vinifera, but all were acceptable hosts for Xiphinema sp. Several rootstocks (e.g., Harmony, 101-14, 1103 P) had greater shoot biomass at the end of year 3 (end of the establishment period) compared to own-rooted V. vinifera, indicating that longer-term impacts on vigor is likely a primary driver behind the resistance phenotype these rootstocks impart under nematode feeding pressure. The goal of this project is to understand the long-term performance of rootstocks and the impacts of nematodes on vineyard lifespan in Washington State.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Michelle M. MOYER1*, Katherine EAST1, and Inga ZASADA2

1 Washington State University, Irrigated Agriculture Research and Extension Center, 24106 N. Bunn Rd., Prosser, WA, USA
2 USDA-ARS, Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR, USA

Contact the author

Keywords

rootstock, vineyard establishment, nematodes, preplant fumigation, resistance, tolerance

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

Modeling island and coastal vineyards potential in the context of climate change

Climate change impacts regional and local climates, which in turn affects the world’s wine regions. In the short term, these modifications rises issues about maintaining quality and style of wine, and in a longer term about the suitability of grape varieties and the sustainability of traditional wine regions. Thus, adaptation to climate change represents a major challenge for viticulture. In this context, island and coastal vineyards could become coveted areas due to their specific climatic conditions. In regions subject to warming, the proximity of the sea can moderate extremes temperatures, which could be an advantage for wine. However, coastal and island areas are particular prized spaces and subject to multiple pressures that make the establishment or extension of viticulture complex.
In this perspective, it seems relevant to assess the potentialities of coastal and island areas for viticulture. This contribution will present a spatial optimization model that tends to characterize most suitable agroclimatic patterns in historical or emerging vineyards according to different scenarios. Thanks to an in-depth bibliography a global inventory of coastal and insular vineyards on a worldwide scale has been realized. Relevant criteria have been identified to describe the specificities of these vineyards. They are used as input data in the optimization process, which will optimize some objectives and spatial aspects. According to a predefined scenario, the objectives are set in three main categories associated with climatic characteristics, vineyards characteristics and management strategies. At the end of this optimization process, a series of maps presents the different spatial configurations that maximize the scenario objectives.

The Baco Blanc, the Armagnac hybrid variety adapted to the viticultural challenges of tomorrow

Today in the wine industry, a lot of alternatives are available for reducing phytosanitary inputs. Among these, prophylaxis, the use of biocontrol products and the deployment of pathogen-resistant vines are the most promising. eugenol (2-methoxy-4-(2-propenyl)-phenol), a molecule with recognised antifungal properties, can contribute to the last two alternatives. This molecule has been identified as an endogenous compound in the baco blanc hybrid variety used in armagnac pdo, which is at least tolerant to botrytis cinerea.

Phenolic composition of Bordeaux grapes 2009 vintage: comparison with 2006, 2007 and 2008 vintages

‘Cabernet sauvignon’ and ‘Merlot’ are among the most recognized red wine grape cultivars. This work is aimed at investigating the proanthocyanidin composition of skins and seeds to determine the grape variety and the vintage effects on the phenolic composition of Bordeaux grapes.

Advancing wine authentication: non-invasive near-infrared spectroscopy and machine learning for vintage and quality traits assessment

Wine fraud, encompassing counterfeiting and adulteration, poses a significant threat to the wine industry, resulting in annual losses totalling billions of dollars.