GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effects of severe shoot trimming at different phenological stages on the composition of Merlot grapes

Effects of severe shoot trimming at different phenological stages on the composition of Merlot grapes

Abstract

Context and purpose of the study – High concentration of sugars in grapes and alcohols in wines is one of the consequences of climate change on viticulture production in several wine regions. One of the options to alleviate this potential problem is to perform severe shoot trimming of the vines to limit the production of carbohydrates. Two different studies were performed in order to investigate the effects of severe shoot trimming on the composition of Merlot grapes; in a first study severe shoot trimming was performed at three different phenological stages (at berry set, at the beginning of veraison and at the end of veraison), while in a second study two trimming treatments (standard shoot trimming and severe shoot trimming performed at the end of veraison) were combined with two shoot densities in order to evaluate the relative impact of these treatments on Merlot grape composition.

Material and methods – In a study conducted during years 2013 and 2014 severe shoot trimming (65 cm shoot height) was performed at berry set (berries 2-4 mm in diameter), at the beginning of veraison (when <5% of berries had changed color), and at the end of veraison (when >80% of berries had changed color). These treatments were compared with a standard canopy treatment (125 cm shoot height). Another study was conducted during years 2015 and 2016, where standard canopy treatment (125 cm shoot height) and severe shoot trimming at the end of veraison (65 cm shoot height) were combined with two shoot densities per vine (obtained with 35% shoot thinning vs. untreated).

Results – Severe shoot trimming at all the three investigated stages reduced sugars in grapes, although this effect was the greatest in the two veraison treatments. Severe shoot trimming at berry set and at the beginning of veraison reduced also the concentration of total anthocyanins in grapes, while severe shoot trimming at the end of veraison obtained similar values of total anthocyanins to the standard canopy treatment. Photosynthetic active radiation in the cluster zone was greater in all treatments with severe shoot trimming because of greater light penetration from the upper part of the canopy. We hypothesize that greater light penetration around clusters in combination to the intensive accumulation of anthocyanins during the first weeks of berry ripening, enabled the treatment of severe shoot trimming at the end of veraison to obtain similar values of total anthocyanins to the standard canopy treatment. No effects on yield components, titratable acidity, pH and total phenolics in berries were observed in any of these treatments. In a study where standard and severe shoot trimming were combined with two shoot densities, a consistent effect on the reduction of grape sugar concentration was achieved only with late severe shoot trimming. Higher shoot density reduced sugars in grapes only in one season, while at the same time reduced the concentration of total anthocyanins in berries.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Marijan BUBOLA1*, Sanja RADEKA1, Sara ROSSI1, Tomislav PLAVŠA1, Milan OPLANIĆ1, Ádám István HEGYI2, László LAKATOS2, Kálmán Zoltán VACZY2

1 Institute of Agriculture and Tourism, Karla Huguesa 8, HR-52440 Poreč, Croatia
2 Eszterházy Károly University, Food and Wine Research Institute, Leányka utca 6, H-3300 Eger, Hungary

Contact the author

Keywords

severe shoot trimming, shoot thinning, Brix, anthocyanins, phenolics

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Developmental stage-specific effects of high temperature on aroma accumulation in ‘Marselan’ grapes from the Helan Mountain region

The aroma of wine grapes is influenced by a complex metabolic network, with terroir factors, especially high temperatures, playing a critical role during berry development.

Évolution de la surmaturation du cépage Chenin dans différents terroirs des Coteaux du Layon en relation avec les variables agroviticoles

The French “Coteaux du Layon” Appellation of Origin has built its Jarne on the production of sweet white wines. A network of experimental plots, based on the “terroir” concept, was established in 1990; it allows for the follow-up of the overripening behaviour of the grapes in relation with the agroviticultural parameters.

Incidences of the climate, the soil and the harvest date on Colombard aromatic potential in Gascony

This experiment tries to characterize the role of soil, climate and harvest date on the composition of grape-derivated thiols, 3-mercapto-hexanol (3MH) and 3-mercapto-hexile acetate (A3MH), in the white wines from Colombard varieties in Gascony (South-West of France). A network of 6 plots has been observed since 1999 on different pedologic units. The plots have common agronomical characteristics, plantation spacing (2,900 to 3,500 vines per ha), plantation aging (1985-1990), strength conferred by rootstock (SO4, RSB), soil management (grass covered 1 by 2) and training system (vertical shoot positionning pruned in single Guyot). Meteorological stations are located near the plots.

Does bioprotection by adding yeasts present antioxydant properties?

AIM: The bioprotection by adding yeasts is an emerging sulfur dioxide alternative. Sulfur dioxide is a chemical adjuvant used for its antiseptic, antioxidasic and antioxidant properties. Faced with the societal demand (Pérès et al., 2018) and considering the proven human risks associated with the total doses of sulfur dioxide (SO2) present in food requirements (García‐Gavín et al., 2012), the reduction of this chemical input is undeniable.

Enhancing hydric stress tolerance by editing the VviMYB60 promoter with CRISPR/Cas9 

Climate change presents increasing challenges to viticulture, particularly with rising water stress contributing significantly to yield losses and damages. The identification of the MYB60 transcription factor, which regulates stomatal opening and closing in Arabidopsis thaliana and Vitis vinifera, offers potential solutions. Notably, knockout studies in Arabidopsis have shown reduced stomatal opening and increased drought tolerance in myb60 mutants. Additionally, the grapevine ortholog, VviMYB60, can restore the wild-type phenotype of Arabidopsis myb60 mutants. Further investigation of the Arabidopsis promoter region has revealed that mutations in DOF motifs lead to reduced expression of AtMYB60.