GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effects of severe shoot trimming at different phenological stages on the composition of Merlot grapes

Effects of severe shoot trimming at different phenological stages on the composition of Merlot grapes

Abstract

Context and purpose of the study – High concentration of sugars in grapes and alcohols in wines is one of the consequences of climate change on viticulture production in several wine regions. One of the options to alleviate this potential problem is to perform severe shoot trimming of the vines to limit the production of carbohydrates. Two different studies were performed in order to investigate the effects of severe shoot trimming on the composition of Merlot grapes; in a first study severe shoot trimming was performed at three different phenological stages (at berry set, at the beginning of veraison and at the end of veraison), while in a second study two trimming treatments (standard shoot trimming and severe shoot trimming performed at the end of veraison) were combined with two shoot densities in order to evaluate the relative impact of these treatments on Merlot grape composition.

Material and methods – In a study conducted during years 2013 and 2014 severe shoot trimming (65 cm shoot height) was performed at berry set (berries 2-4 mm in diameter), at the beginning of veraison (when <5% of berries had changed color), and at the end of veraison (when >80% of berries had changed color). These treatments were compared with a standard canopy treatment (125 cm shoot height). Another study was conducted during years 2015 and 2016, where standard canopy treatment (125 cm shoot height) and severe shoot trimming at the end of veraison (65 cm shoot height) were combined with two shoot densities per vine (obtained with 35% shoot thinning vs. untreated).

Results – Severe shoot trimming at all the three investigated stages reduced sugars in grapes, although this effect was the greatest in the two veraison treatments. Severe shoot trimming at berry set and at the beginning of veraison reduced also the concentration of total anthocyanins in grapes, while severe shoot trimming at the end of veraison obtained similar values of total anthocyanins to the standard canopy treatment. Photosynthetic active radiation in the cluster zone was greater in all treatments with severe shoot trimming because of greater light penetration from the upper part of the canopy. We hypothesize that greater light penetration around clusters in combination to the intensive accumulation of anthocyanins during the first weeks of berry ripening, enabled the treatment of severe shoot trimming at the end of veraison to obtain similar values of total anthocyanins to the standard canopy treatment. No effects on yield components, titratable acidity, pH and total phenolics in berries were observed in any of these treatments. In a study where standard and severe shoot trimming were combined with two shoot densities, a consistent effect on the reduction of grape sugar concentration was achieved only with late severe shoot trimming. Higher shoot density reduced sugars in grapes only in one season, while at the same time reduced the concentration of total anthocyanins in berries.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Marijan BUBOLA1*, Sanja RADEKA1, Sara ROSSI1, Tomislav PLAVŠA1, Milan OPLANIĆ1, Ádám István HEGYI2, László LAKATOS2, Kálmán Zoltán VACZY2

1 Institute of Agriculture and Tourism, Karla Huguesa 8, HR-52440 Poreč, Croatia
2 Eszterházy Károly University, Food and Wine Research Institute, Leányka utca 6, H-3300 Eger, Hungary

Contact the author

Keywords

severe shoot trimming, shoot thinning, Brix, anthocyanins, phenolics

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Evaluation of “Accentuated cut edges” technique on the release of varietal thiols and their precursors in Shiraz and Sauvignon blanc wine production

Accentuated cut edges (ACE) is a novel grape crushing technique used sequentially after a conventional crusher to increase the extraction rate and content of polyphenolics, as shown for Pinot noir wine. This inspired us to apply the technique during Shiraz and Sauvignon blanc winemaking, primarily to assess its impact on the extraction of varietal thiol precursors in grape must/juice and formation of varietal thiols in the resultant wines

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Influence of agrophotovoltaic on vine and must in a cool climate

The current energy crisis means that interest in agrophotovoltaics has increased significantly. The reason behind this is that the system aims to combine agricultural production with energy production. During the three-year period from 2020 to 2022, the effects of photovoltaic panels on the vine, the yield and the quality of the must were studied in Walenstadt in northern Switzerland, an area with a cool, humid climate. 65 Pinot noir vines were planted in the 160m2 study area. Because of the large edge effects, only 3 repetitions with 4 vines each could be created. A significantly lower leaf infestation by Plasmopara viticola was observed among the panels in each of the three years.

Development of a LC-FTMS method to quantify natural sweeteners in red wines

The quality of a wine is largely related to the balance between its sourness, bitterness and sweetness. Recently, molecules coming from grapes have been showed to notably contribute to sweet taste of dry wines. To study the viticultural and oenological parameters likely to affect their concentration, their quantification appears of high interest and subsequently requires powerful analytical techniques. Therefore, a new method using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) was developed and validated to quantify epi-DPA-3′-O-β-glucopyranoside acid (epi-DPA-G) and astilbin, sweet molecules identified in wine. Three gradients were tested on five different C18 columns (Hypersil Gold, HSS T3, BEH, Syncronis and Kinetex).

Grapevine nitrogen dynamics as a function of crop thinning

Context and purpose. Nitrogen (N) is crucial for plant development but is used inefficiently, with only 30–40% of the fertilizer assimilated by crops, leading to significant environmental losses.