GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effects of severe shoot trimming at different phenological stages on the composition of Merlot grapes

Effects of severe shoot trimming at different phenological stages on the composition of Merlot grapes

Abstract

Context and purpose of the study – High concentration of sugars in grapes and alcohols in wines is one of the consequences of climate change on viticulture production in several wine regions. One of the options to alleviate this potential problem is to perform severe shoot trimming of the vines to limit the production of carbohydrates. Two different studies were performed in order to investigate the effects of severe shoot trimming on the composition of Merlot grapes; in a first study severe shoot trimming was performed at three different phenological stages (at berry set, at the beginning of veraison and at the end of veraison), while in a second study two trimming treatments (standard shoot trimming and severe shoot trimming performed at the end of veraison) were combined with two shoot densities in order to evaluate the relative impact of these treatments on Merlot grape composition.

Material and methods – In a study conducted during years 2013 and 2014 severe shoot trimming (65 cm shoot height) was performed at berry set (berries 2-4 mm in diameter), at the beginning of veraison (when <5% of berries had changed color), and at the end of veraison (when >80% of berries had changed color). These treatments were compared with a standard canopy treatment (125 cm shoot height). Another study was conducted during years 2015 and 2016, where standard canopy treatment (125 cm shoot height) and severe shoot trimming at the end of veraison (65 cm shoot height) were combined with two shoot densities per vine (obtained with 35% shoot thinning vs. untreated).

Results – Severe shoot trimming at all the three investigated stages reduced sugars in grapes, although this effect was the greatest in the two veraison treatments. Severe shoot trimming at berry set and at the beginning of veraison reduced also the concentration of total anthocyanins in grapes, while severe shoot trimming at the end of veraison obtained similar values of total anthocyanins to the standard canopy treatment. Photosynthetic active radiation in the cluster zone was greater in all treatments with severe shoot trimming because of greater light penetration from the upper part of the canopy. We hypothesize that greater light penetration around clusters in combination to the intensive accumulation of anthocyanins during the first weeks of berry ripening, enabled the treatment of severe shoot trimming at the end of veraison to obtain similar values of total anthocyanins to the standard canopy treatment. No effects on yield components, titratable acidity, pH and total phenolics in berries were observed in any of these treatments. In a study where standard and severe shoot trimming were combined with two shoot densities, a consistent effect on the reduction of grape sugar concentration was achieved only with late severe shoot trimming. Higher shoot density reduced sugars in grapes only in one season, while at the same time reduced the concentration of total anthocyanins in berries.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Marijan BUBOLA1*, Sanja RADEKA1, Sara ROSSI1, Tomislav PLAVŠA1, Milan OPLANIĆ1, Ádám István HEGYI2, László LAKATOS2, Kálmán Zoltán VACZY2

1 Institute of Agriculture and Tourism, Karla Huguesa 8, HR-52440 Poreč, Croatia
2 Eszterházy Károly University, Food and Wine Research Institute, Leányka utca 6, H-3300 Eger, Hungary

Contact the author

Keywords

severe shoot trimming, shoot thinning, Brix, anthocyanins, phenolics

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

SSR analysis of some Vitis sylvestris (GMEL.) accessions of the Szigetköz and Fertő-hanság national park, Hungary

The evolution of cultivated plants played important role in the ascent of humanity. Research of their origin and evolution started at the beginning of the20th century, but till nowadays a lot of questions remain open. A large number of theories exist about the evolution of the European grapevine (Vitis vinifera L.). The Vitis sylvestris GMEL. in Hungary is a protected species.

A DNA-free editing approach to help viticulture sustainability: dual editing of DMR6-1 and DMR6-2 enhances resistance to downy mildew 

The sustainability of viticulture hinges on maintaining quality and yield while reducing pesticide use. Promising strides in this direction involve the development of clones with enhanced disease tolerance, particularly through the knockout of plant susceptibility genes. Knocking out of Downy Mildew Resistant 6 (DMR6) led to increased levels of endogenous salicylic acid (SA), a regulator of immunity, resulting in enhanced tolerance to Downy Mildew (DM) and other diseases in various crops.

Metabolomic discrimination of grapevine water status for Chardonnay and Pinot noir

Water status impact in viticulture has been widely explored, as it strongly affects grapevine physiology and grape chemical composition. It is considered as a key component of vitivinicultural terroir. Most of the studies concerning grapevine water status have focused on either physiological traits, or berry compounds, or traits involved in wine quality. Here, the response of grapevine to water availability during the ripening period is assessed through non-targeted metabolomics analysis of grape berries by ultra-high resolution mass spectrometry. The grapevine water status has been assessed during 2 consecutive years (2019 & 2020), through carbon isotope discrimination on juices from berries collected at maturity (21.5 brix approx.) for 2 Vitis vinifera cv. Pinot noir (PN) and Chardonnay (CH). A total of 220 grape juices were collected from 5 countries worldwide (Italy; Argentina; France; Germany; Portugal). Measured δ13C (‰) varied from -28.73 to -22.6 for PN, and from -28.79 to -21.67 for CH. These results also clearly revealed higher water stress for the 2020 vintage. The same grape juices have been analysed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Liquid Chromatography coupled to Mass Spectrometry (LC-qTOF-MS), leading to the detection of up to 4500 CHONS containing elemental compositions, and thus likely tens of thousands of individual compounds, which include fatty acids, organic acids, peptides, phenolics, also with high levels of glycosylation. Multivariate statistical analysis revealed that up to 160 elemental compositions, covering the whole range of detected masses (100 –1000 m/z), were significantly correlated to the observed gradients of water status. Examples of chemical markers, which are representative of these complex fingerprints, include various derivatives of the known abscisic acid (ABA), such as phaesic acid or abscisic acid glucose ester, which are significantly correlated with higher water stress, regardless of the variety. Cultivar-specific behaviours could also be identified from these fingerprints. Our results provide an unprecedented representation of the metabolic diversity, which is involved in the water status regulation at the grape level, and which could contribute to a better knowledge of the grapevine mitigation strategy in a climate change context.

The anthocyanin profile of galician endangered varieties. A tool for varietal selection

AIM: The current loss of genetic grapevine diversity is mainly due to the reduced number of varieties used for making wine. A way of preserved endangered varieties is the establishment of germplasm banks.

A facile and robust method for the quantification of polyphenols in red wine via NMR

Nuclear magnetic resonance spectroscopy (NMR) is a high-tech analytical method that recently found its way into the field of wine analysis with special focus on wine authentication.