GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Impact of moderate water deficit on grape quality potential on Pinot Noir in Champagne (France)

Impact of moderate water deficit on grape quality potential on Pinot Noir in Champagne (France)

Abstract

Context and purpose of the study – Environmental factors like soil and climate influence grape quality potential. Their impact is often mediated through vine water and nitrogen status. Depending on the color of the grapes (red or white) and the type of wine produced, the desired level of vine water and nitrogen status for optimum wine quality is different. Little investigation has been carried out concerning these factors and their potential influence on sparkling wine quality on two vintages. In this study vine water and nitrogen status were assessed at a very high density and related to grape composition and berry weight. Through statistical analyses, the major factors driving grape quality potential on Pinot noir in Champagne were highlighted.

Material and methods – High quality Champagne potential was related to particular grape composition. On 25 hectares planted with Pinot noir, grape samples were taken following a very high density grid (10 samples / ha). One sample is composed of 200 berries taken on 10 vines. On these samples, vine water status was assessed by measuring δ13C in grape juice and vine nitrogen status by measuring NH4+ in must. Berry weight, grape sugar, total acidity, malate and pH were also measured. Berry weight was recorded at each sampling location while yield was measured at a lower spatial resolution (the parcel level). These measures have been carried out on two vintages (2017 and 2018) and on 4 locations known to produce different quality levels of Champagne.

Results – Quality level of Champagne was positively related to technological maturity of Pinot noir. Following, malate and sugar/total acidity ratio (S/TA) were considered as a proxy for grape quality potential. A vintage effect was highlighted, the higher level of water deficit in 2018 increased the level of maturity compared to 2017. There is also a location effect, Tauxières Nord and Sud have a lower level of maturity even if Tauxières Sud is more constraint in 2018 than the other locations.
Water deficit plays an important role on maturity of Pinot noir in our study with a strong significant relation with malate and a significant link more or less important depending on vintage with pH, S/TA ratio and berry weight.
The effect of vine nitrogen status on maturity is more complex with no clear correlations during the vintages studied.
Berry weight is positively correlated to water deficit (δ13C) in a dry vintage (2018) and to vine nitrogen status (must NH4+) in a vintage characterized by lower water deficit (2017). A yield effect has been identified particular on S/TA ratio.
When Pinot noir vines face water deficits in Champagne, maturity is improved. It should be noted that due to capillary water movements in the limestone soils, water deficits are rarely severe. In our study water deficits ranged from non-existent to moderate. Water deficit improved grape quality potential for sparkling wines produced from Pinot noir in this study. More investigations are needed to confirm these results in other vintages and on a wider range of soil types.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Laure de RESSEGUIER1*, Elisa MARGUERIT1, Jean-Philippe ROBY1, Bérangère FIERFORT-CAQUÉ2, Gaël VUILLE2, Denis BUNNER2, Cornelis VAN LEEUWEN1

1 EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, 33882 Villenave d’Ornon, France
2 Champagne Bollinger, 20 Boulevard Maréchal de Lattre de Tassigny, 51160 Aÿ-Champagne, France

Contact the author

Keywords

grapevine, sparkling wine, Champagne, quality potential, water deficit, grape composition

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Release and perception of γ-nonalactone and massoia lactone in the red wine matrix: impact of ethanol and acidity

Climate change (CC) is altering grape/wine composition, leading to challenges in maintaining wine sensory quality.

Rationalising the impact of time, light, temperature, and oxygen on the evolution of rosé wines by means of a surface response methodology approach

The widespread use of flint glass bottles for rosé wines is driven by consumer preference for color as a key choice factor.

Learning from remote sensing data: a case study in the Trentino region 

Recent developments in satellite technology have yielded a substantial volume of data, providing a foundation for various machine learning approaches. These applications, utilizing extensive datasets, offer valuable insights into Earth’s conditions. Examples include climate change analysis, risk and damage assessment, water quality evaluation, and crop monitoring. Our study focuses on exploiting satellite thermal and multispectral imaging, and vegetation indexes, such as NDVI, in conjunction with ground truth information about soil type, land usage (forest, urban, crop cultivation), and irrigation water sources in the Trentino region in North-East of Italy.

The evolution of wine tourism: trends, challenges and opportunities for the future

The wine tourism industry has experienced significant transformation over the past years, accelerated by the COVID-19 pandemic.

Drought tolerance of varieties in semi-arid areas: can the behavior of Tempranillo be improved by varieties of its own lineage?

Tempranillo is the most widely grown red grapevine variety in Spain, currently representing 42% of the total number of red varieties and 21% of the total vineyard area. Due to the economic importance that this variety represents in Spanish viticulture, in some areas where it is traditionally grown, there is a special concern about the viability of the future growing of this variety is being compromised by the climate change effects.