GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Impact of moderate water deficit on grape quality potential on Pinot Noir in Champagne (France)

Impact of moderate water deficit on grape quality potential on Pinot Noir in Champagne (France)

Abstract

Context and purpose of the study – Environmental factors like soil and climate influence grape quality potential. Their impact is often mediated through vine water and nitrogen status. Depending on the color of the grapes (red or white) and the type of wine produced, the desired level of vine water and nitrogen status for optimum wine quality is different. Little investigation has been carried out concerning these factors and their potential influence on sparkling wine quality on two vintages. In this study vine water and nitrogen status were assessed at a very high density and related to grape composition and berry weight. Through statistical analyses, the major factors driving grape quality potential on Pinot noir in Champagne were highlighted.

Material and methods – High quality Champagne potential was related to particular grape composition. On 25 hectares planted with Pinot noir, grape samples were taken following a very high density grid (10 samples / ha). One sample is composed of 200 berries taken on 10 vines. On these samples, vine water status was assessed by measuring δ13C in grape juice and vine nitrogen status by measuring NH4+ in must. Berry weight, grape sugar, total acidity, malate and pH were also measured. Berry weight was recorded at each sampling location while yield was measured at a lower spatial resolution (the parcel level). These measures have been carried out on two vintages (2017 and 2018) and on 4 locations known to produce different quality levels of Champagne.

Results – Quality level of Champagne was positively related to technological maturity of Pinot noir. Following, malate and sugar/total acidity ratio (S/TA) were considered as a proxy for grape quality potential. A vintage effect was highlighted, the higher level of water deficit in 2018 increased the level of maturity compared to 2017. There is also a location effect, Tauxières Nord and Sud have a lower level of maturity even if Tauxières Sud is more constraint in 2018 than the other locations.
Water deficit plays an important role on maturity of Pinot noir in our study with a strong significant relation with malate and a significant link more or less important depending on vintage with pH, S/TA ratio and berry weight.
The effect of vine nitrogen status on maturity is more complex with no clear correlations during the vintages studied.
Berry weight is positively correlated to water deficit (δ13C) in a dry vintage (2018) and to vine nitrogen status (must NH4+) in a vintage characterized by lower water deficit (2017). A yield effect has been identified particular on S/TA ratio.
When Pinot noir vines face water deficits in Champagne, maturity is improved. It should be noted that due to capillary water movements in the limestone soils, water deficits are rarely severe. In our study water deficits ranged from non-existent to moderate. Water deficit improved grape quality potential for sparkling wines produced from Pinot noir in this study. More investigations are needed to confirm these results in other vintages and on a wider range of soil types.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Laure de RESSEGUIER1*, Elisa MARGUERIT1, Jean-Philippe ROBY1, Bérangère FIERFORT-CAQUÉ2, Gaël VUILLE2, Denis BUNNER2, Cornelis VAN LEEUWEN1

1 EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, 33882 Villenave d’Ornon, France
2 Champagne Bollinger, 20 Boulevard Maréchal de Lattre de Tassigny, 51160 Aÿ-Champagne, France

Contact the author

Keywords

grapevine, sparkling wine, Champagne, quality potential, water deficit, grape composition

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effects of soil water content and environmental conditions on vine water status and gas exchange of Vitis vinifera L. cv. chardonnay

Vine water status has a significant influence on vineyard yield and berry composition (Williams and Matthews, 1990; Williams et al., 1994). It has been hypothesized that the response of plants to soil water deficits may be due to some sort of “root signal” (Davies and Zhang, 1991). This signal probably arises due to the roots sensing a reduction in soil water content or an increase in the mecanical impedance as the soil dries out.

Landscapes of Vines and Wines Patrimony – Stakes – Valorisation

The interaction between wine and landscapes is of an unsuspected richness. On the one side, the vineyards form part of the landscapes which they model. On the other side, the wines are related in their perception to the image of a region, a landscape and are at the origin of a cultural richness.

Why aren’t farmers using precision viticulture frequently? A case study

n the last years, viticulture precision tools have been made available for farmers for different crops. The feeling that these tools are mandatory on an agriculture of the future have been disseminated by commercial entities but also from policy makers.

Grapevine genotypes differ in xylem vessel occlusion after winter pruning 

Grapevines are continually wounded throughout their cultivation especially during winter pruning. Grapevines respond to wounding by occluding xylem vessels with gels or tyloses to limit pathogen attack and dehydration of the tissues. Although the production of xylem vessel occlusions has been studied in grapevine, to date we have no knowledge of whether different genotypes respond differently. The objective of this study was to characterize the genetic variation in xylem vessel occulsions in five different scion genotypes pruned at different dates.

Climate and mesoclimate zonification in the Miño valley (Galicia, NW Spain)

Galicia est une région située dans le Nord-Ouest de l’Espagne avec une longe tradition de culture de la vigne. A jour d’oui la vigne occupe en Galicia presque 28.500 ha, desquelles 8.100 correspondent aux 5 zones ayant droit à l’appellation DO (« Denominación de Origen ») équivalent aux AOC françaises.