GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Impact of moderate water deficit on grape quality potential on Pinot Noir in Champagne (France)

Impact of moderate water deficit on grape quality potential on Pinot Noir in Champagne (France)

Abstract

Context and purpose of the study – Environmental factors like soil and climate influence grape quality potential. Their impact is often mediated through vine water and nitrogen status. Depending on the color of the grapes (red or white) and the type of wine produced, the desired level of vine water and nitrogen status for optimum wine quality is different. Little investigation has been carried out concerning these factors and their potential influence on sparkling wine quality on two vintages. In this study vine water and nitrogen status were assessed at a very high density and related to grape composition and berry weight. Through statistical analyses, the major factors driving grape quality potential on Pinot noir in Champagne were highlighted.

Material and methods – High quality Champagne potential was related to particular grape composition. On 25 hectares planted with Pinot noir, grape samples were taken following a very high density grid (10 samples / ha). One sample is composed of 200 berries taken on 10 vines. On these samples, vine water status was assessed by measuring δ13C in grape juice and vine nitrogen status by measuring NH4+ in must. Berry weight, grape sugar, total acidity, malate and pH were also measured. Berry weight was recorded at each sampling location while yield was measured at a lower spatial resolution (the parcel level). These measures have been carried out on two vintages (2017 and 2018) and on 4 locations known to produce different quality levels of Champagne.

Results – Quality level of Champagne was positively related to technological maturity of Pinot noir. Following, malate and sugar/total acidity ratio (S/TA) were considered as a proxy for grape quality potential. A vintage effect was highlighted, the higher level of water deficit in 2018 increased the level of maturity compared to 2017. There is also a location effect, Tauxières Nord and Sud have a lower level of maturity even if Tauxières Sud is more constraint in 2018 than the other locations.
Water deficit plays an important role on maturity of Pinot noir in our study with a strong significant relation with malate and a significant link more or less important depending on vintage with pH, S/TA ratio and berry weight.
The effect of vine nitrogen status on maturity is more complex with no clear correlations during the vintages studied.
Berry weight is positively correlated to water deficit (δ13C) in a dry vintage (2018) and to vine nitrogen status (must NH4+) in a vintage characterized by lower water deficit (2017). A yield effect has been identified particular on S/TA ratio.
When Pinot noir vines face water deficits in Champagne, maturity is improved. It should be noted that due to capillary water movements in the limestone soils, water deficits are rarely severe. In our study water deficits ranged from non-existent to moderate. Water deficit improved grape quality potential for sparkling wines produced from Pinot noir in this study. More investigations are needed to confirm these results in other vintages and on a wider range of soil types.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Laure de RESSEGUIER1*, Elisa MARGUERIT1, Jean-Philippe ROBY1, Bérangère FIERFORT-CAQUÉ2, Gaël VUILLE2, Denis BUNNER2, Cornelis VAN LEEUWEN1

1 EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, 33882 Villenave d’Ornon, France
2 Champagne Bollinger, 20 Boulevard Maréchal de Lattre de Tassigny, 51160 Aÿ-Champagne, France

Contact the author

Keywords

grapevine, sparkling wine, Champagne, quality potential, water deficit, grape composition

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Regionality in Australian Shiraz: Sensory profiles of wines from six regions and their associations with chemical, geographical and climatic elements

Aim: Regional characters relating to Shiraz in Australia are not well documented. This study aimed to characterize the sensory, chemical and climate profiles of wines from various Australian Shiraz producing regions. 

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

Desorption of phenolic compounds bound to lees by combining hydrolytic enzymes and ultrasounds

he final concentration of phenolic compounds in the wines is usually lower than what might be expected given the phenolic concentration measured in grapes

High-throughput sequencing analysis based on nematode indices revealed healthier soils of organic vineyards 

Proper soil health assessments are crucial for sustainable cropland. Among the widely employed approaches, evaluating nematode community structure is particularly suitable. Traditionally, the taxonomic characterization of soil nematodes has relied on time-consuming morphology-based methods requiring experienced experts. However, molecular tools like high-throughput sequencing have emerged as efficient alternatives. In this study, we performed a metataxonomic analysis of soil samples collected from 57 vineyards in the DOCa Rioja region of Northern Spain, focusing on the impact of organic viticulture and cover cropping compared to integrated pest management (IPM) and tilling practices.

Implementing VIS-NIR spectroscopy as a rapid and non-intrusive technique for assessing anthocyanin and phenolic concentrations in Vitis vinifera L. Grenache whole grape berries

Anthocyanins and phenolic compounds play a crucial role in winemaking, contributing to the profile, flavor, color, texture, and stability of wine. Grape clusters, specifically Vitis vinifera L. cv. Grenache, were handpicked from a commercial vineyard sited in Tudelilla, La Rioja, Spain (42°18′ 52.26″, Long. -2°7′ 59.15″, Alt. 582 m) on five distinct dates from veraison to harvest during the 2015 season. Non-contact spectral measurements were conducted on intact grape berries using a VIS-NIR spectrometer operating in the 570 – 1000 nm spectral range under controlled laboratory conditions, positioned at a distance of 25 cm from the berries. The quantification of 16 anthocyanins and phenols in 120 grape clusters was performed using HPLC, established as the reference method for validating the spectral tool.