OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 A tool for catching mice in wine: development and application of a method for the detection of mousy off-flavour compounds in wine

A tool for catching mice in wine: development and application of a method for the detection of mousy off-flavour compounds in wine

Abstract

Over the past two years, the AWRI has received 69 wine samples suspected of being affected by mousy off-flavour. The character has been mostly observed in white wines. Possible reasons for this could be the increased use of white winemaking techniques such as high grape solids ferments and extended lees ageing to add textural components to white wine, and higher pH, lower sulfur dioxide and minimal clarification or filtration practices. 

Mousy character is an off-flavour in wine that has been described as similar to the smell of caged mice. Although generally infrequent, its detrimental effect on wine quality can cause economic loss to wine producers and, in severe cases, can render wine unpalatable. Mousy off-flavour is a unique wine fault which, due to its chemical nature in wine pH, is rarely perceived by aroma but instead is detected retronasally after affected wine is swallowed or expectorated. There is a wide variation in the ability or sensitivity of individuals to perceive this character, with some tasters unable to perceive it at all. This creates problems for wine producers if they do not have the ability to detect the character during production and therefore do not take remedial action. 

The compounds responsible for this off-flavour in wine reportedly include 2-acetyltetrahydropyridine (ACTPY), 2-acetylpyrroline (ACPY), 2-acetylpyridine (AP) and 2-ethyltetrahydropyridine (ETPY). However, the contribution and importance of these individual compounds to mousiness in spoiled wines has not been demonstrated. The unavailability of a practical and reliable method for the detection and quantification of mousy-related compounds in wine has impeded objective measurement of mousy-affected wines and further research in preventing or reducing the occurrence of this fault in wine. 

The authors have recently developed a HPLC-MS method for the quantitation of ACTPY, ACPY and AP in wine. The method is simple and rapid and requires only filtration and basification for sample preparation. The analytical run time is approximately 17 minutes for one sample. Precision and accuracy tests confirm that the method is highly reliable and robust. The AWRI has implemented the developed method as a tool for the investigation of wines suspected of being affected by mousiness. A description of the method development and its application to off-flavour investigations will be presented and discussed.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Yoji Hayasaka, Geoff Cowey, Adrian Coulter

The Australian Wine Research Institute, Hartley Grove cnr Paratoo Road, Urrbrae, South Australia 5064, Australia

Contact the author

Keywords

Off-flavour, Mousiness, HPLC-MS, Wine fault 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

Blend wines made of Syrah, Marselan and Tannat, had better color and more phenolic diversity than varietal wines

Background: Elaborating red-wines from grape cultivars with different polyphenolic profiles could improve wine color and its phenolic-dependent characteristics

Characterizing graft union formation in different scion/rootstock combinations of grapevine 

In most viticultural regions, grapevines are cultivated grafted, employing either hybrid or pure species of various American Vitis spp., such as V. berlandieri, V. rupestris, and V. riparia, as grapevine rootstocks. These rootstocks play a crucial role in providing resistance to the Phylloxera insect pest. Beyond Phylloxera resistance, it is desirable for grapevine rootstocks to exhibit resistance to other soil-borne pathogens and adaptability to abiotic stress conditions. The introduction of new rootstocks holds promise for adapting agriculture to climate change without altering the characteristics of the final harvested product.

Transforming the grapevine world through new breeding techniques

Climate change and environmental degradation are existential threats to europe and the world. One of the most important objectives is to reduce by 2030 the use and the risk of chemical pesticides and fertilisers, reducing nutrient losses and increasing organic farming. Grapevine (vitis spp.) is one of the major and most economically important fruit crops worldwide. It is characterised by high levels of genetic diversity, as result of natural genetic mutations, which are common in grapevines and further assisted by ongoing vegetative propagation.

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;