OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 A tool for catching mice in wine: development and application of a method for the detection of mousy off-flavour compounds in wine

A tool for catching mice in wine: development and application of a method for the detection of mousy off-flavour compounds in wine

Abstract

Over the past two years, the AWRI has received 69 wine samples suspected of being affected by mousy off-flavour. The character has been mostly observed in white wines. Possible reasons for this could be the increased use of white winemaking techniques such as high grape solids ferments and extended lees ageing to add textural components to white wine, and higher pH, lower sulfur dioxide and minimal clarification or filtration practices. 

Mousy character is an off-flavour in wine that has been described as similar to the smell of caged mice. Although generally infrequent, its detrimental effect on wine quality can cause economic loss to wine producers and, in severe cases, can render wine unpalatable. Mousy off-flavour is a unique wine fault which, due to its chemical nature in wine pH, is rarely perceived by aroma but instead is detected retronasally after affected wine is swallowed or expectorated. There is a wide variation in the ability or sensitivity of individuals to perceive this character, with some tasters unable to perceive it at all. This creates problems for wine producers if they do not have the ability to detect the character during production and therefore do not take remedial action. 

The compounds responsible for this off-flavour in wine reportedly include 2-acetyltetrahydropyridine (ACTPY), 2-acetylpyrroline (ACPY), 2-acetylpyridine (AP) and 2-ethyltetrahydropyridine (ETPY). However, the contribution and importance of these individual compounds to mousiness in spoiled wines has not been demonstrated. The unavailability of a practical and reliable method for the detection and quantification of mousy-related compounds in wine has impeded objective measurement of mousy-affected wines and further research in preventing or reducing the occurrence of this fault in wine. 

The authors have recently developed a HPLC-MS method for the quantitation of ACTPY, ACPY and AP in wine. The method is simple and rapid and requires only filtration and basification for sample preparation. The analytical run time is approximately 17 minutes for one sample. Precision and accuracy tests confirm that the method is highly reliable and robust. The AWRI has implemented the developed method as a tool for the investigation of wines suspected of being affected by mousiness. A description of the method development and its application to off-flavour investigations will be presented and discussed.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Yoji Hayasaka, Geoff Cowey, Adrian Coulter

The Australian Wine Research Institute, Hartley Grove cnr Paratoo Road, Urrbrae, South Australia 5064, Australia

Contact the author

Keywords

Off-flavour, Mousiness, HPLC-MS, Wine fault 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Modelling vine water stress during a critical period and potential yield reduction rate in European wine regions: a retrospective analysis

Most European vineyards are managed under rainfed conditions, where seasonal water deficit has become increasingly important. The flowering-veraison phenophase represents an important period for vine response to water stress, which is seldomly thoroughly evaluated. Therefore, we aim to quantify the flowering-veraison water stress levels using Crop Water Stress Indicator (CWSI) over 1986–2015 for important European wine regions, and to assess the respective potential Yield Lose Rate (YLR). Additionally, we also investigate whether an advanced flowering-veraison phase may help alleviating the water stress with improved yield. A process-based grapevine model STICS is employed, which has been extensively calibrated for flowering and veraison stages using observed data at 38 locations with 10 different grapevine varieties. Subsequently, the model is being implemented at the regional level, considering site-specific calibration results and gridded climate and soil datasets. The findings suggest wine regions with stronger flowering-veraison CWSI tend to have higher potential YLR. However, contrasting patterns are found between wine regions in France-Germany-Luxembourg and Italy-Portugal-Spain. The former tends to have slight-to-moderate drought conditions (CWSI<0.5) and a negligible-to-moderate YLR (<30%), whereas the latter possesses severe-to-extreme CWSI (>0.5) and substantial YLR (>40%). Wine regions prone to a high drought risk (CWSI>0.75) are also identified, which are concentrated in southern Mediterranean Europe. An advanced flowering-veraison phase may have benefited from cooler temperatures and a higher fraction of spring precipitation in wine regions of Italy-Portugal-Spain, resulting in alleviated CWSI and moderate reductions of YLR. For those of France-Germany-Luxembourg, this can have reduced flowering-veraison precipitation, but prevalent alleviations of YLR are also found, possibly because of shifted phase towards a cooler growing season with reduced evaporative demands. Overall, such a retrospective analysis might provide new insights towards better management of seasonal water deficit for conventionally vulnerable Mediterranean wine regions, but also for relatively cooler and wetter Central European regions.

Grape solids: new advances on the understanding of their role in enological alcoholic fermentation

Residual grape solids (suspended particles) in white and rosé musts vary depending on the clarification pro-cess. These suspended solids contain lipids (more especially phytosterols) that are essential for yeast meta-bolism and viability during fermentation in anaerobic conditions.

Ceramic imprint in wine: influence of hydraulic ratio on ceramic dissolution and wine pH in amphorae systems

This interaction is primarily due to an acidic attack on the ceramic by the wine. It results in (1) the dissolution of the ceramic into the wine and the release of a wide variety of elements; and (2) an increase of the wine pH. The extent of these effects depends on the mineralogical and chemical composition of the ceramic, as well as the hydraulic ratio of the ceramic-wine system (the term hydraulic ratio (ρ) defines here the volume of wine over the surface area of the ceramic in contact with the wine).

Cell-to-cell contact modulates Starmerella bacillaris early death in mixed fermentations with Saccharomyces cerevisiae in a couple-dependent way

AIM: The diversity and complexity of the fermentation ecosystem during wine making limits the successful prediction of wine characteristics. The use of selected starter cultures has allowed a better control of the fermentation process and the production of wines with established characteristics. Among them, the use of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae yeasts has gained attention in recent years due to the fructophylic nature of the first and the ability of this inoculation protocol to reduce the acetic acid and ethanol content of the wines.

Temperature variations in the Walla Walla valley American Viticultural Area

Variations in average growing season and ripening season temperatures within the Walla Walla Valley American Viticultural Area are related to elevation and regional and local topography.