OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 A tool for catching mice in wine: development and application of a method for the detection of mousy off-flavour compounds in wine

A tool for catching mice in wine: development and application of a method for the detection of mousy off-flavour compounds in wine

Abstract

Over the past two years, the AWRI has received 69 wine samples suspected of being affected by mousy off-flavour. The character has been mostly observed in white wines. Possible reasons for this could be the increased use of white winemaking techniques such as high grape solids ferments and extended lees ageing to add textural components to white wine, and higher pH, lower sulfur dioxide and minimal clarification or filtration practices. 

Mousy character is an off-flavour in wine that has been described as similar to the smell of caged mice. Although generally infrequent, its detrimental effect on wine quality can cause economic loss to wine producers and, in severe cases, can render wine unpalatable. Mousy off-flavour is a unique wine fault which, due to its chemical nature in wine pH, is rarely perceived by aroma but instead is detected retronasally after affected wine is swallowed or expectorated. There is a wide variation in the ability or sensitivity of individuals to perceive this character, with some tasters unable to perceive it at all. This creates problems for wine producers if they do not have the ability to detect the character during production and therefore do not take remedial action. 

The compounds responsible for this off-flavour in wine reportedly include 2-acetyltetrahydropyridine (ACTPY), 2-acetylpyrroline (ACPY), 2-acetylpyridine (AP) and 2-ethyltetrahydropyridine (ETPY). However, the contribution and importance of these individual compounds to mousiness in spoiled wines has not been demonstrated. The unavailability of a practical and reliable method for the detection and quantification of mousy-related compounds in wine has impeded objective measurement of mousy-affected wines and further research in preventing or reducing the occurrence of this fault in wine. 

The authors have recently developed a HPLC-MS method for the quantitation of ACTPY, ACPY and AP in wine. The method is simple and rapid and requires only filtration and basification for sample preparation. The analytical run time is approximately 17 minutes for one sample. Precision and accuracy tests confirm that the method is highly reliable and robust. The AWRI has implemented the developed method as a tool for the investigation of wines suspected of being affected by mousiness. A description of the method development and its application to off-flavour investigations will be presented and discussed.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Yoji Hayasaka, Geoff Cowey, Adrian Coulter

The Australian Wine Research Institute, Hartley Grove cnr Paratoo Road, Urrbrae, South Australia 5064, Australia

Contact the author

Keywords

Off-flavour, Mousiness, HPLC-MS, Wine fault 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.

Evolution of the amino acids content through grape ripening: Effect of foliar application of methyl jasmonate with or without urea

The parameters that determine the grape quality, and therefore the optimal harvest time, suffer variations during berry ripening, related to climate change, with the widely known problem of the gap between technological and phenolic maturities. However, there are few studies about its incidence on grape nitrogen composition. For this reason, the use of an elicitor, methyl jasmonate (MeJ), alone or with urea, is proposed as a tool to reduce climatic decoupling, allowing to establish the harvest time in order to achieve the optimum grape quality. The aim was to study the effect of MeJ and MeJ+Urea foliar applications on the evolution of Tempranillo amino acids content throughout the grape maturation. Three treatments were foliarly applied, at veraison and 7 days later: control (water), MeJ (10 mM) and MeJ+Urea (10 mM+6 kg N/ha). Grape samples were taken at five stages of maturation: day before the first and second applications, 15 days after the second application (pre-harvest), harvest day, and 15 days after harvest (post-harvest). The amino acids analysis of the samples was carried out by HPLC. Results showed that the evolution of amino acids was similar regardless of the treatment; however, foliar applications influenced the nitrogen compounds content, i.e., there was no qualitative effect but quantitative one. Most of the amino acids reached their maximum concentration in pre-harvest, being higher in grapes from the treatments than in the control. In general, no differences in grape amino acids content were observed between MeJ and MeJ+Urea treatments. Foliar applications with MeJ and MeJ+Urea enhanced the grape amino acids content, without affecting their profile, helping to optimize their quality and allowing to establish a more complete grape ripening standard. Therefore, MeJ and MeJ+Urea foliar applications can be a simple agronomic practice, which has shown promising results in order to enhance the grape quality.

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.

New Insights into Wine Color Analysis: A Comparison of Analytical Methods and their Correlation with Sensory Perception

wo spectrophotometric methods are recommended by the Organisation Internationale de la vigne et du vin (OIV). The first is the method after Glories, were the absorbances at 420 nm, 520 nm and 620 nm are measured (OIV 2006a).

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).