terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Genetic study of wild grapevines in La Rioja region

Genetic study of wild grapevines in La Rioja region

Abstract

Since the mid-1980s, several surveys have been carried out in La Rioja to search for populations of the sylvestrisgrapevine subspecies (Vitis vinifera L. subsp. sylvestris Gmelin). The banks of the Ebro River and its tributaries (Alhama, Cidacos, Leza, Iregua, Najerilla, Oja and Tirón rivers), as well as the surrounding vegetation of their valleys have been covered. So far, all the populations found are alluvial, forming part of the riparian vegetation of the Najerilla (the first reported population in La Rioja [1]), Iregua, and the vicinity of Oja valleys. Nevertheless, doubts arose from the beginning about the ‘sylvestris purity’ of some of these wild vines. In this work, leaves and/or cuttings from 83 vines have been used for genetic analyses: 63 vines were sampled in the wild in La Rioja region (17 from Najerilla banks, 43 from Iregua banks, and 3 from Agualinos stream, tributary of the Oja river), and 20 vines were sampled in the grapevine sylvestris collection of the University of La Rioja, originally collected as wild vines from the Najerilla valley. DNAs were extracted and genotyped at 6 microsatellite and 240 SNP markers. A total of 58 different genotypes were found, 20 in the Najerilla population, 36 in the Iregua population and 2 in the Oja population. These genotypes were included in a large genetic structure analysis of more than 2.800 genotypes representing worldwide sylvestrisand sativa subspecies. More than 84% of the wild samples from La Rioja showed a high membership coefficient to the sylvestris population, supporting their sylvestris condition. A local analysis focused on genotypes of cultivated and wild vines found in La Rioja separated them into two main clusters, with a clear division between sylvestris and cultivated vines. Some wild vine genotypes were found in intermediate positions between these two groups, indicating the existence of an introgression of the sativa gene pool into the sylvestris population, constituting an additional threat to the sylvestris subspecies.

Acknowledgements: This work is part of the project “Diversidad genética en la vid y adaptación al cambio climático” (PID2020-120183RB-I00), funded by MCIN / AEI /10.13039/501100011033.

1)  De Toda F. M. and J. C. Sancha (1999) Characterization of Wild Vines in La Rioja (Spain). Am. J. Enol. Vitic. 50: 443-446, doi: 10.5344/ajev.1999.50.4.443.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Javier Ibáñez1*, Javier Tello1, Fernando Martínez de Toda1, José Manuel Valle2, Álvaro Rodríguez-Miranda2, Carlos Alvar Ocete3, José Miguel Martínez-Zapater1, Rafael Ocete3

1 Instituto de Ciencias de la Vid y del Vino (CSIC, UR, CAR). Finca La Grajera, Ctra. de Burgos Km. 6, 26007 Logroño, La Rioja. Spain
2 Built Heritage Research Group (GPAC), University of the Basque Country (UPV/EHU), Vitoria- Gasteiz. Spain
3 Freelance, Tirgo, La Rioja. Spain

Contact the author*

Keywords

introgression, genetic structure, microsatellite, SNP, sylvestris, Vitis vinifera, wild

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Improving our knowledge on biotic and abiotic factors that influence the composition of the grapevine mycobiome is of great agricultural significance, due to potential effects on plant health, productivity, and wine characteristics. Among the various environmental factors affecting the morphological, physiological, biochemical and molecular attributes of grapevine, drought stress is one of the most severe, becoming increasingly an issue worldwide.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.