GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

Abstract

Context and purpose of the study – The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties. The aim of the present study was to evaluate the quality and the ripening process of Pinot blanc grape by a non-destructive fluorescence-based sensor.

Material and methods – The study was performed on two vineyards of cv. Pinot blanc located in the Adige Valley (South Tyrol, Bolzano), in two consecutive vintages. The vineyard differed in the row orientation, east-west or north-south, and then on the sun light exposure of the grape-bunches. The grape phenolic maturity was assessed on intact berries by six measurements from bunch closure to harvest time. In each vineyard, 25 grape-bunches per row sides were flashed by Multiplex® 3.6 (Force-A, Orsay, France), for a total of 3 rows and 150 grape-bunches/measurement. The instrument indices of chlorophyll (SFR_R) and flavonols (FLAV_UV) were considered. Standard grape maturity tests were performed to assess total soluble solids (TSS) and total acidity content of the grape juice by spectroscopic method. At maturity the grapes were processed with a standard vinification protocol for white wines. Total polyphenolic content of wines was determined by a spectrophotometric analysis.

Results – A linear decrease of SFR_R index in the berry-skin during the grape ripening period was recorded. Interestingly, SFR_R values negative correlated with the TTS accumulation in Pinot blanc berries. On the other side, positive correlations between SFR_R and titratable acidity, malic acid and tartaric acid content, were observed. The FLAV_UV index showed an increasing linear trend during the grape ripening period. At harvest, significant difference in FLAV_UV index between the two vineyards was observed. Looking more deeply inside the data, the berry-skin FLAV_UV index significantly differed among the four sun-light expositions, with greater values recorded for the grape-bunches located in south and east sides of the vineyard rows. These results are in accordance with the available literature on the role flavonols as sun-burn protection compounds. Interestingly, the total polyphenolic content of the produced wines showed a positive correlation with the final FLAV_UV values measured in the berry-skin. In conclusion, the Multiplex® indices could improve precision viticulture strategies, such as the implementation of precision harvest practices. Indeed, SFR_R index could be used to indirectly evaluate the whole ripening process of white grapes in term of grape sugar content and acidity, while FLAV_UV could provide useful indications to winemakers about taste of final product. Future studies will be necessary to better correlate the berry-skin FLAV_UV values and the flavours of white wine.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Selena TOMADA1*, Florian PICHLER1, Julia MARTINELLI1, Giovanni AGATI2, Valentina LAZAZZARA3, Martin ZEJFART4, Fenja HINZ3, Ulrich PEDRI4, Peter ROBATSCHER3, Florian HAAS1

1 Department of Viticulture, Laimburg Research Centre, BZ, Italy
2 Istituto di Fisica Applicata ‘Nello Carrara’, CNR, FI, Italy
3 Laboratory for Flavours and Metabolites, Laimburg Research Centre, BZ, Italy
4 Department of Enology, Laimburg Research Centre, BZ, Italy

Contact the author

Keywords

chlorophyll, flavonols, grape, Multiplex®, quality, Pinot blanc.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Influence Of Different Grape Polysaccharides On Phenolic Compounds And Colour Characteristics Of Tempranillo Red Wines

Polysaccharides (PS) are one of the main compounds found in wines, and they come mainly from the grape cell walls or from the yeasts, and they play an important role in the technological and sensory characteristics of wines. Polysaccharides obtained from yeasts have been more studied, especially mannoproteins, since there are commercial products.

Innovative approaches in the evaluation of the spatial and temporal biodiversity of grape varieties from the Portuguese Bairrada appellation using LIMM-PCA: a study across five harvests

Sustainable viticulture and winemaking continue to represent huge challenges, where a better knowledge about the functional role of biodiversity in the vineyard and wine ecosystems is required, as well as the varieties plasticity. Particular attention should be devoted to the spatial and temporal interactions between authorized or recommended varieties for a specific demarcated region and clime and vineyard conditions (such as soil type, orientation of the lines, age of the vine, density of planting, harvesting practices, among others).

Inhibition of reductive characters in wine by cu-organic acids: predicting the duration of protection

Cu organic acid complexes efficiently bind hydrogen sulfide in wine and therefore prevent its accumulation and subsequent reductive off-flavour [1]. This fraction of Cu can also bind methanethiol

Direct-injection HPLC for simultaneous determination of individual and total polyphenols in red wines: validation of the method

Polyphenols are very important compounds of red wines, serving as essential bioactive components and playing an important role in sensory properties. The determination of individual phenolic compounds in red wine is commonly performed by HPLC analysis, while the total polyphenols are quantified by spectrophotometric methods, usually by the method of absorbance at 280 nm (index of ribéreau-gayon) or the method of index of folin-ciocalteu. In this work, we pioneeringly proposed a new and fast method for simultaneous determination of individual and total polyphenols in red wines by direct-injection HPLC without sample preparation.

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.