GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

Abstract

Context and purpose of the study – The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties. The aim of the present study was to evaluate the quality and the ripening process of Pinot blanc grape by a non-destructive fluorescence-based sensor.

Material and methods – The study was performed on two vineyards of cv. Pinot blanc located in the Adige Valley (South Tyrol, Bolzano), in two consecutive vintages. The vineyard differed in the row orientation, east-west or north-south, and then on the sun light exposure of the grape-bunches. The grape phenolic maturity was assessed on intact berries by six measurements from bunch closure to harvest time. In each vineyard, 25 grape-bunches per row sides were flashed by Multiplex® 3.6 (Force-A, Orsay, France), for a total of 3 rows and 150 grape-bunches/measurement. The instrument indices of chlorophyll (SFR_R) and flavonols (FLAV_UV) were considered. Standard grape maturity tests were performed to assess total soluble solids (TSS) and total acidity content of the grape juice by spectroscopic method. At maturity the grapes were processed with a standard vinification protocol for white wines. Total polyphenolic content of wines was determined by a spectrophotometric analysis.

Results – A linear decrease of SFR_R index in the berry-skin during the grape ripening period was recorded. Interestingly, SFR_R values negative correlated with the TTS accumulation in Pinot blanc berries. On the other side, positive correlations between SFR_R and titratable acidity, malic acid and tartaric acid content, were observed. The FLAV_UV index showed an increasing linear trend during the grape ripening period. At harvest, significant difference in FLAV_UV index between the two vineyards was observed. Looking more deeply inside the data, the berry-skin FLAV_UV index significantly differed among the four sun-light expositions, with greater values recorded for the grape-bunches located in south and east sides of the vineyard rows. These results are in accordance with the available literature on the role flavonols as sun-burn protection compounds. Interestingly, the total polyphenolic content of the produced wines showed a positive correlation with the final FLAV_UV values measured in the berry-skin. In conclusion, the Multiplex® indices could improve precision viticulture strategies, such as the implementation of precision harvest practices. Indeed, SFR_R index could be used to indirectly evaluate the whole ripening process of white grapes in term of grape sugar content and acidity, while FLAV_UV could provide useful indications to winemakers about taste of final product. Future studies will be necessary to better correlate the berry-skin FLAV_UV values and the flavours of white wine.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Selena TOMADA1*, Florian PICHLER1, Julia MARTINELLI1, Giovanni AGATI2, Valentina LAZAZZARA3, Martin ZEJFART4, Fenja HINZ3, Ulrich PEDRI4, Peter ROBATSCHER3, Florian HAAS1

1 Department of Viticulture, Laimburg Research Centre, BZ, Italy
2 Istituto di Fisica Applicata ‘Nello Carrara’, CNR, FI, Italy
3 Laboratory for Flavours and Metabolites, Laimburg Research Centre, BZ, Italy
4 Department of Enology, Laimburg Research Centre, BZ, Italy

Contact the author

Keywords

chlorophyll, flavonols, grape, Multiplex®, quality, Pinot blanc.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Winter physiology in a warmer world: Cold hardiness and deacclimation sensitivity drive variation in spring phenology

As the climate warms, the focus of concern in viticulture often turns to how higher temperatures may shift growing regions, change the character of AVAs, and alter fruit quality. However, climate warming is increasing most quickly during the winter dormancy cycle, a critical and often underappreciated portion of the grapevine life cycle. In response to decreasing temperatures and decreasing daylength, grapes initiate a series of physiological changes to enter dormancy, acquire freeze resistance, and time spring phenology such that the growing season begins after threat of frost.

VitExpress, an open interactive transcriptomic platform for grapevine

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Vitis vinifera ‘Ráthay’ on the rootstocks ‘Kober 5BB’, ‘Fercal’, and ‘3309 C’: results of a long-term field trial

Context and purpose of the study. Ráthay is an Austrian red quality wine variety with increased resistance to fungi.

Preliminary evaluation of agronomic and enological properties of preselected grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

Cultivation of a few number of clones is causing the loss of vineyard biodiversity, resulting in the disappearance of biotypes that could be of interest to face future challenges,

The key role of vineyard parcel in modifying flavor compounds of Cabernet Sauvignon grapes

To produce premium wines in a specific region is the goal of local oenologists. This study aimed to investigate the influence of soil properties on the flavoromics of Cabernet Sauvignon grapes to provide a better insight into single-vineyard wines. Six commercial Cabernet Sauvignon vineyards were selected in the Manas region to collect berries at three harvest ripeness in three seasons (2019–2021). The six vineyards had little difference in mesoclimate conditions while varying greatly in soil composition.