GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

Abstract

Context and purpose of the study – San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

Materials and methods – Field grown spur-pruned Cabernet Sauvignon vines grafted on Freedom rootstocks trained on quadrilateral cordons were included in this study. Two (water deficit) × three (mechanical leafing) factorial trial with a split block design, replicated in 5 times, was applied in 2018. Ten rows of vines (200 vines per row) were divided into two groups and each group was assigned to one of water deficit treatments as the “main plot”. Three mechanical leafing treatments were allocated randomly in the “main plot” as the “sub plot”. Two levels of water deficits included: 1) “sustained deficit irrigation” with 80% ETc from fruitset to harvest; 2) “regulated deficit irrigation” with 50% ETc from fruitset to veraison and 80% ETc from veraison to harvest. Three mechanical leafing treatments using the cut-suck type mechanical leafer to remove basal leaves on the “morning” side of the canopy included: 1) bloom leafing (stage EL-21); 2) pea size leafing (stage EL-31); 3) no leafing. Six vines in each “sub plot” were labeled as data vines.

Results – Leafing at bloom and pea size reduced about 8% of total leaf area as the comparison of control, however, bloom leafing only resulted in the temporary improved fruit-zone light exposure, while water deficit treatment did not cause any significant difference on leaf area. Water deficit had a bigger impact on yield than leafing with 20% yield reduction resulted from severe water deficit, and no impact on yield was found from leafing. The yield reduction was mainly driven by reduced cluster weight associated with the smaller berry size. Similar result was also found for leaf area/fruit ratio, while all the ratios fell in the previously published optimal range.As for berry composition, water deficit reduced titratable acidity and 3-isobutyl-2-methoxypyrazine (IBMP) while improving berry anthocyanins. Bloom leafing improved berry anthocyanins and increased IBMP. Resulted wine color was also improved by water deficit and bloom leafing. Key words: Mechanical leafing, Water deficit, Yield, Fruit quality, Wine chemistry

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Shijian ZHUANG1*, Qun SUN2, Karl LUND3, Kaan KURTURAL4, Matthew FIDELIBUS4

1 UC Cooperative Extension, Fresno County
2 California State University at Fresno
3 UC Cooperative Extension, Madera County
4 University of California at Davis

Contact the author

Keywords

mechanical leafing, water deficit, yield, fruit quality, wine chemistry

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The role of phytoplasma effector interaction with phosphoglucomutase in the pathogenicity of ‘Candidatus Phytoplasma solani’ in grapevine 

Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with ‘Candidatus Phytoplasma solani’. In symptomatic grapevines cv. ‘Zweigelt’ infected with ‘Ca. P. solani’ compared with uninfected grapevines, metabolic pathways associated with phosphorylated sugar production were induced both at the transcriptional level and at the level of activity of the corresponding enzymes (Dermastia et al., 2021, Int. J. Mol. Sci. 22: 3531). In particular, the expression of gene coding for phosphoglucoisomerase was upregulated, resulting in increased phosphoglucoisomerase enzyme activity.

Multivariate strategies for red wines classification using stilbenes and flavonols content

Bioactive polyphenols from grapes and wines, like stilbenes and flavonols (SaF), are often determined to nutritional evaluation, but also for many other purposes. The objective of this study was to quantify SaF in red wines from “Campanha Gaúcha”, a large and young viticultural region from South Brazil. Moreover, through statistical analysis, evaluate the influence of these compounds according to varieties, production process, harvest years and micro-regions of cultivation. A total of 58 samples of red wines were analyzed by high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) for determination of trans-resveratrol (R), quercetin (Q), myricetin (M), kaempferol (K), trans-e-viniferin (V) and their precursor, cinnamic acid (C).

Impact of pruning method on vegetative growth and yield

Over the past fifteen years or so, a number of theories have emerged on more or less new pruning practices.

Electrochemical approaches in wine analysis 

There is a high demand in the wine industry for analytical methods able to provide useful information to support the decision-making process in the vineyard and in the winery. Ideally these methods should be rapid (e.g.

Aroma quality of fortified wines from different Moscato cv. Cultivated in sicily

AIM: Vitis vinifera L. cv. Moscato includes different varieties, mainly white grapes with a medium-sized berry, spheroidal or slightly flattened in shape, yellow greenish color which becomes golden yellow or amber when exposed to the sun. Moscato varieties are mainly used for the production of sweet aromatic wines