GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

Abstract

Context and purpose of the study – San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

Materials and methods – Field grown spur-pruned Cabernet Sauvignon vines grafted on Freedom rootstocks trained on quadrilateral cordons were included in this study. Two (water deficit) × three (mechanical leafing) factorial trial with a split block design, replicated in 5 times, was applied in 2018. Ten rows of vines (200 vines per row) were divided into two groups and each group was assigned to one of water deficit treatments as the “main plot”. Three mechanical leafing treatments were allocated randomly in the “main plot” as the “sub plot”. Two levels of water deficits included: 1) “sustained deficit irrigation” with 80% ETc from fruitset to harvest; 2) “regulated deficit irrigation” with 50% ETc from fruitset to veraison and 80% ETc from veraison to harvest. Three mechanical leafing treatments using the cut-suck type mechanical leafer to remove basal leaves on the “morning” side of the canopy included: 1) bloom leafing (stage EL-21); 2) pea size leafing (stage EL-31); 3) no leafing. Six vines in each “sub plot” were labeled as data vines.

Results – Leafing at bloom and pea size reduced about 8% of total leaf area as the comparison of control, however, bloom leafing only resulted in the temporary improved fruit-zone light exposure, while water deficit treatment did not cause any significant difference on leaf area. Water deficit had a bigger impact on yield than leafing with 20% yield reduction resulted from severe water deficit, and no impact on yield was found from leafing. The yield reduction was mainly driven by reduced cluster weight associated with the smaller berry size. Similar result was also found for leaf area/fruit ratio, while all the ratios fell in the previously published optimal range.As for berry composition, water deficit reduced titratable acidity and 3-isobutyl-2-methoxypyrazine (IBMP) while improving berry anthocyanins. Bloom leafing improved berry anthocyanins and increased IBMP. Resulted wine color was also improved by water deficit and bloom leafing. Key words: Mechanical leafing, Water deficit, Yield, Fruit quality, Wine chemistry

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Shijian ZHUANG1*, Qun SUN2, Karl LUND3, Kaan KURTURAL4, Matthew FIDELIBUS4

1 UC Cooperative Extension, Fresno County
2 California State University at Fresno
3 UC Cooperative Extension, Madera County
4 University of California at Davis

Contact the author

Keywords

mechanical leafing, water deficit, yield, fruit quality, wine chemistry

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.

Application of ultrasonic and refractometric measurements in enological samples and related model solutions

AIM: The refractive index is a basic optical property of materials and a key tool for the determination of major components in musts, such as sugars

Implications of herbicide, cultivation or cover crop under-vine soil management on the belowground microbiote

Soil management through cover crops in the lines of the vineyards is a common practice in viticulture, since it improves the characteristics of the soil. It has been shown that the cover crops can influence the cycle of nutrients, promote infiltration, decrease erosion, and enhance the soil microbiota biodiversity improving the grapevines. However, the area under the vines tends to be left bare by applying herbicides or tillage to avoid competition with the crop in hot climates. The use of cover crops under the vines might be a plausible alternative to the use of herbicides or cultivation, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status and belowground microbial communities.

Evolution of cabernet sauvignon wines macerated with their own toasted vine-shoots

Toasted pruning vine-shoots represent a promising new enological tool for developing wines with chemical and organoleptic high quality, allowing that the resources of the vineyard to be returned to the wine through a “circular process”.