GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

Abstract

Context and purpose of the study – San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

Materials and methods – Field grown spur-pruned Cabernet Sauvignon vines grafted on Freedom rootstocks trained on quadrilateral cordons were included in this study. Two (water deficit) × three (mechanical leafing) factorial trial with a split block design, replicated in 5 times, was applied in 2018. Ten rows of vines (200 vines per row) were divided into two groups and each group was assigned to one of water deficit treatments as the “main plot”. Three mechanical leafing treatments were allocated randomly in the “main plot” as the “sub plot”. Two levels of water deficits included: 1) “sustained deficit irrigation” with 80% ETc from fruitset to harvest; 2) “regulated deficit irrigation” with 50% ETc from fruitset to veraison and 80% ETc from veraison to harvest. Three mechanical leafing treatments using the cut-suck type mechanical leafer to remove basal leaves on the “morning” side of the canopy included: 1) bloom leafing (stage EL-21); 2) pea size leafing (stage EL-31); 3) no leafing. Six vines in each “sub plot” were labeled as data vines.

Results – Leafing at bloom and pea size reduced about 8% of total leaf area as the comparison of control, however, bloom leafing only resulted in the temporary improved fruit-zone light exposure, while water deficit treatment did not cause any significant difference on leaf area. Water deficit had a bigger impact on yield than leafing with 20% yield reduction resulted from severe water deficit, and no impact on yield was found from leafing. The yield reduction was mainly driven by reduced cluster weight associated with the smaller berry size. Similar result was also found for leaf area/fruit ratio, while all the ratios fell in the previously published optimal range.As for berry composition, water deficit reduced titratable acidity and 3-isobutyl-2-methoxypyrazine (IBMP) while improving berry anthocyanins. Bloom leafing improved berry anthocyanins and increased IBMP. Resulted wine color was also improved by water deficit and bloom leafing. Key words: Mechanical leafing, Water deficit, Yield, Fruit quality, Wine chemistry

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Shijian ZHUANG1*, Qun SUN2, Karl LUND3, Kaan KURTURAL4, Matthew FIDELIBUS4

1 UC Cooperative Extension, Fresno County
2 California State University at Fresno
3 UC Cooperative Extension, Madera County
4 University of California at Davis

Contact the author

Keywords

mechanical leafing, water deficit, yield, fruit quality, wine chemistry

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The effect of wine matrix on the initial release of volatile compounds and their evolution in the headspace

There is evidence in the literature that non-volatile wine matrix can modify the release and therefore the perception of the compounds involved in wine aroma [1-3].

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Multiple sclerosis (MS) is a multifactorial autoimmune disease associating demyelination and axonal degeneration developing in young adults and affecting 2–3 million people worldwide. Plant polyphenols endowed with many therapeutic benefits associated with anti-inflammatory and antioxidant properties represent highly interesting new potential therapeutic strategies. We recently showed the safety and high efficiency of grape seed extract (GSE), a complex mixture of polyphenolics compounds comprising notably flavonoids and proanthocyanidins, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

Harvest dates – temperature relationships and thermal requirements of winegrape varieties in Greece: observed and future climate responses

Air temperature is arguably one of the most decisive factors for winegrape varieties developmental cycle, ripening potential and yield.

Adaptability of grapevines to climate change: characterization of phenology and sugar accumulation of 50 varieties, under hot climate conditions

Climate is the major factor influencing the dynamics of the vegetative cycle and can determine the timing of phenological periods. Knowledge of the phenology of varieties, their chronological duration, and thermal requirements, allows not only for the better management of interventions in the vineyard, but also to predict the varieties’ behaviour in a scenario of climate change, giving the wine producer the possibility of selecting the grape varieties that are best adapted to the climatic conditions of a certain terroir. In 2014, Symington Family Estates, Vinhos, established two grape variety libraries in two different places with distinctive climate conditions (Douro Superior, and Cima Corgo), with the commitment of contributing to a deeper agronomic and oenological understanding of some grape varieties, in hot climate conditions. In these research vineyards are represented local varieties that are important in the regional and national viticulture, but also others that have over time been forgotten — as well as five international reference cultivars. From 2017 to 2021, phenological observations have been made three times a week, following a defined protocol, to determine the average dates of budbreak, flowering and veraison. With the climate data of each location, the thermal requirements of each variety and the chronological duration of each phase have been calculated. During maturation, berry samples have been gathered weekly to study the dynamics of sugar accumulation, between other parameters. The data was analysed applying phenological and sugar accumulation models available in literature. The results obtained show significant differences between the varieties over several parameters, from the chronological duration and thermal requirements to complete the various stages of development, to the differences between the two locations, confirming the influence of the climate on phenology and the stages of maturation, in these specific conditions.