GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

Abstract

Context and purpose of the study – San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

Materials and methods – Field grown spur-pruned Cabernet Sauvignon vines grafted on Freedom rootstocks trained on quadrilateral cordons were included in this study. Two (water deficit) × three (mechanical leafing) factorial trial with a split block design, replicated in 5 times, was applied in 2018. Ten rows of vines (200 vines per row) were divided into two groups and each group was assigned to one of water deficit treatments as the “main plot”. Three mechanical leafing treatments were allocated randomly in the “main plot” as the “sub plot”. Two levels of water deficits included: 1) “sustained deficit irrigation” with 80% ETc from fruitset to harvest; 2) “regulated deficit irrigation” with 50% ETc from fruitset to veraison and 80% ETc from veraison to harvest. Three mechanical leafing treatments using the cut-suck type mechanical leafer to remove basal leaves on the “morning” side of the canopy included: 1) bloom leafing (stage EL-21); 2) pea size leafing (stage EL-31); 3) no leafing. Six vines in each “sub plot” were labeled as data vines.

Results – Leafing at bloom and pea size reduced about 8% of total leaf area as the comparison of control, however, bloom leafing only resulted in the temporary improved fruit-zone light exposure, while water deficit treatment did not cause any significant difference on leaf area. Water deficit had a bigger impact on yield than leafing with 20% yield reduction resulted from severe water deficit, and no impact on yield was found from leafing. The yield reduction was mainly driven by reduced cluster weight associated with the smaller berry size. Similar result was also found for leaf area/fruit ratio, while all the ratios fell in the previously published optimal range.As for berry composition, water deficit reduced titratable acidity and 3-isobutyl-2-methoxypyrazine (IBMP) while improving berry anthocyanins. Bloom leafing improved berry anthocyanins and increased IBMP. Resulted wine color was also improved by water deficit and bloom leafing. Key words: Mechanical leafing, Water deficit, Yield, Fruit quality, Wine chemistry

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Shijian ZHUANG1*, Qun SUN2, Karl LUND3, Kaan KURTURAL4, Matthew FIDELIBUS4

1 UC Cooperative Extension, Fresno County
2 California State University at Fresno
3 UC Cooperative Extension, Madera County
4 University of California at Davis

Contact the author

Keywords

mechanical leafing, water deficit, yield, fruit quality, wine chemistry

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Advanced phenology due to climate change is projected to shift precipitation patterns for key cultivar-region combinations in New Zealand

Context of the study. Shifts in grapevine phenology driven by temperature increase due to climate change may result in different rainfall profiles between phenological stages.

Phenolic profiles of minor red grape cultivars autochthonous from the Spanish region of La Mancha

The phenolic profiles of little known red grape cultivars, namely Garnacho, Moribel and Tinto Fragoso, which are autochthonous from the Spanish region of La Mancha (ca. 600,000 ha of vineyards) have been studied over the consecutive seasons of years 2013 and 2014. The study was separately performed over the skins, the pulp and the seeds, and comprised the following phenolic types: anthocyanins, flavonols, hydroxycinnamic acid derivatives (HCADs), total proanthocyanidins (PAs) and their structural features. The selected grape cultivars belong to the Vine Germplasm Bank created in this region in order to preserve the great diversity of genotypes grown in La Mancha.

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

Fungal communites diversity and functional roles of different types of Botrytis cinerea infected grape berries on different growing sites

Botrytis cinerea, an Ascomycota pathogen with a broad host range, infects over 1200 plant species. Grapes infected by this pathogen, which subsequently develop a noble rot, remain in the vineyard for an extended period, thus being exposed to a diverse array of physical, chemical and biological factors, which give rise to a complex microbial community.

The selection of Vitis vinifera L. cultivars based on berry texture, iPBS genetic markers, and noble rot susceptibility analysis

The selection of a suitable grape variety (Vitis vinifera L.) for specific viticulture and oenology objectives is a considerable challenge in the context of climate change.