terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Abstract

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León. In 2022, trapping experiments were conducted in the wine-producing region of Spain (PDO León) in five varieties of V. vinifera (Tempranillo, Prieto Picudo, Albarín, Mencía and Verdejo), using interception traps (CROSSTRAP®) with a ethanol (2), in a completely randomized design. The traps were checked every few days and the number of mean adults captured in traps were compared using one-way ANOVA followed by Fisher´s LSD post-hoc test (P<0.05). The greatest days of insects captures were from 1-June to 13-June (25 in Tempranillo, 26 in Prieto Picudo, 21 in Albarín, 17 in Mencía and 6 in Verdejo). Tempranillo and Prieto Picudo varieties had more insects captured per trap (2.75 and 2.66 insects, respectively) during all the evaluation period in the vineyards, significantly different from insects captured per trap in Albarín variety (1.83 insects), Mencía variety (1.58 insects) and Verdejo variety (0.66 insects). Tempranilloand Prieto Picudo were the varieties more attacked by X. arvicola. The first days of June were capture the highest number of X. arvicola adults.

Acknowledgments:

Special thanks to the own research program of the University of León 2022 for the grant awarded to Daniela Ramírez Lozano, to the Ministry of Education, Culture and Sport (Spain) for the grant awarded to Laura Zanfaño González (FPU 20/03040).

References:

1) Rodríguez-González, A. et al. (2020) Failure under stress of grapevine Wood: the effects of the Cerambycid Xylotrechus arvicola on the biomechanics properties of Vitis vinifera. Ciencia y tecnología 22(2): 167-178, DOI: 10.4067/S0718-221X2020005000203
2) Rodríguez-González, A. et al. (2018) Evaluation of commercial and prototype traps for Xylotrechus arvicola (Coleoptera: Cerambycidae), an insect pest in Spanish vineyards. Australian Journal of Grape and Wine Research 24, 190-196, DOI 10.1111/ajgw.12324

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Ramírez-Lozano D. 1, Rodríguez-González A.1, Zanfaño-González L. 1 Carro-Huerga G. 1, ORTÍZ-HERNÁNDEZ A. 2, Mayo-Prieto S. 1, Gutiérrez S. 1, CASQUERO P.A.1

1Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS). Departamento de Ingeniería y Ciencias Agrarias. Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad. Escuela de Ingeniería Agraria y Forestal. Universidad de León. León. España.
2Departamento de Química Orgánica e Inorgánica. Escuela Politécnica Superior de Linares. Universidad de Jaén, 23700 Linares. España.

Contact the author*

Keywords

vineyards, insect pest, Xylotrechus arvicola

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

Traditional drought tolerant varieties such as Cabernet Sauvignon, Monastrell, and Syrah [1], have been used as parents in the grapevine breeding program initiated by the Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA) in 1997 [2]. This work presents the results of evaluating three new genotypes obtained from crosses between ‘Monastrell’ and ‘Cabernet Sauvignon’ (MC16 and MC80) and between ‘Monastrell’ and ‘Syrah’ (MS104), comparing their performance under conditions of water scarcity and high temperatures with that of their respective parental varieties. For this purpose, the six genotypes were cultivated under controlled irrigation conditions (60% ETc) and rainfed conditions.

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.

Cumulative effect of deficit irrigation and salinity on vine responses

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen).

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system.