terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

Abstract

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane. Chitin, the major component of fungal cell walls, is well known to elicit plant immune responses. In Vitis vinifera, knowledge about the perception and immune responses triggered by chitin oligomers is now better understood [1]. Among the LysM receptor-like kinases (LysM-RLKs) family of PRRs, which includes 16 members in Vitis vinifera, three of them (VvLYK1-1, VvLYK1-2 and VvLYK5-1) are involved in the perception of chitin oligomers to trigger plant immune responses [1,2]. Recently, another member of this family, named VvLYK6, was identified in grapevine as being overexpressed following a Botrytis cinerea infection. We characterized the role of VvLYK6 in plant immunity by overexpressing it in Arabidopsis thaliana and grapevine. Surprisingly, overexpression of VvLYK6 decreased chitin-induced MAPK activation, defense gene expression, callose deposition and increased plant sensitivity to fungal infections. According to these results, VvLYK6 negatively regulates chitin-induced defense reactions in grapevine and could be considered as a susceptibility gene in the context of fungal infections.

Acknowledgements: We acknowledge Institut Carnot Plant2Pro for funding the VitiLYKs project and DimaCell platform (Dijon, France) for the confocal microscopy.

References:
1) Roudaire T. et al. (2023) The grapevine LysM receptor-like kinase VvLYK5-1 recognizes chitin oligomers through its association with VvLYL1-1. Front. Plant Sci. 14:1130782 DOI 10.3389/fpls.2023.1130782

2) Brulé D. et al. (2019) The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity. Plant Biotechnol. J. 17, 812–825. DOI 10.1111/pbi.13017

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Villette J.1*, Marzari T.1, Roudaire T.1, Klinguer A.1, Leborgne-Castel N.1, Héloir M-C.1, Poinssot B.1

1Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France.

Contact the author*

Keywords

grapevine, plant defense, LysM receptor-like kinase, defense inhibition

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Polysaccharide families of lyophilized extracts obtained from unfermented varietal grape pomaces

The recovery of bioactive compounds from grape and wine by-products is currently an important objective for revaluation and sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds. The aim of this study was to evaluate the polysaccharide (PS) composition of extracts obtained from pomaces of different white and red grape varieties of Castilla y León. Grape pomaces were obtained after the pressing in the winemaking process.

Detoxification capacities of heavy metals and pesticides by yeasts 

Winegrowing is still characterized by the extensive use of chemical fertilizers and plant protection products, despite strong recommendations to limit these practices. A part of these xenobiotics and metals are then found in grape juice and wine, causing a major health concern, as well as negatively affecting the fermentation process. In recent years, there has been renewed interest in non-Saccharomyces yeasts. These species have a wide phenotypic diversity, which would be exploited to broaden the aromatic palette of wines.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Crops are facing increasing biotic and abiotic stress pressures due to global changes. However, trade-off mechanisms between these stresses and the underlying physiological processes are still poorly understood, especially in perennial crop species. To better understand these trade-offs, we studied the effect of drought on grapevine (Vitis vinifera) physiology and esca-related wood fungal communities. Esca is a vascular disease caused by a community of wood-infecting pathogenic fungi, and characterized by trunk necrosis, leaf scorch symptoms, yield losses, and mortality.

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.