terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

Abstract

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane. Chitin, the major component of fungal cell walls, is well known to elicit plant immune responses. In Vitis vinifera, knowledge about the perception and immune responses triggered by chitin oligomers is now better understood [1]. Among the LysM receptor-like kinases (LysM-RLKs) family of PRRs, which includes 16 members in Vitis vinifera, three of them (VvLYK1-1, VvLYK1-2 and VvLYK5-1) are involved in the perception of chitin oligomers to trigger plant immune responses [1,2]. Recently, another member of this family, named VvLYK6, was identified in grapevine as being overexpressed following a Botrytis cinerea infection. We characterized the role of VvLYK6 in plant immunity by overexpressing it in Arabidopsis thaliana and grapevine. Surprisingly, overexpression of VvLYK6 decreased chitin-induced MAPK activation, defense gene expression, callose deposition and increased plant sensitivity to fungal infections. According to these results, VvLYK6 negatively regulates chitin-induced defense reactions in grapevine and could be considered as a susceptibility gene in the context of fungal infections.

Acknowledgements: We acknowledge Institut Carnot Plant2Pro for funding the VitiLYKs project and DimaCell platform (Dijon, France) for the confocal microscopy.

References:
1) Roudaire T. et al. (2023) The grapevine LysM receptor-like kinase VvLYK5-1 recognizes chitin oligomers through its association with VvLYL1-1. Front. Plant Sci. 14:1130782 DOI 10.3389/fpls.2023.1130782

2) Brulé D. et al. (2019) The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity. Plant Biotechnol. J. 17, 812–825. DOI 10.1111/pbi.13017

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Villette J.1*, Marzari T.1, Roudaire T.1, Klinguer A.1, Leborgne-Castel N.1, Héloir M-C.1, Poinssot B.1

1Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France.

Contact the author*

Keywords

grapevine, plant defense, LysM receptor-like kinase, defense inhibition

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.

Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1]

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.

Long-lasting flavour perception of wines treated with oenological additives considering the individual PROP taste-phenotype

The use of oenological additives is becoming a common practice due to the technological and sensory properties they provide to the wines. However, the number of studies focused on the impact that these additives might induce on wine flavor perception during wine tasting is still quite scarce. The aim of this work was to evaluate the effect of three different types of common oenological additives: two oenotannins (ellagitannin and gallotannin) and a commercial preparation of yeast mannoproteins on the long-lasting flavor perception (aroma and astringency).

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.