terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Abstract

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential. Thus, there is a scope for innovation in grapevine rootstock varieties by exploiting a wider range of wild Vitis species. The aim of this study was to investigate the drought adaptation potential of a wide range of previously unexplored wild Vitis species, integrating information at different biological scales: from genomics, transcriptomics and metabolomics to developmental and functional root traits. Our hypothesis is that metabolites can be considered as intermediate phenotypes in roots because they are expected to be mechanistically related to more complex root phenotypes. For these purposes, we investigated genetic differentiation between species and variability within species using SNPs obtained from Illumina paired-end whole genome sequencing (4k project)[1]. In addition, we characterized the response of cuttings from 12 American, Asian and Eurasian wild Vitis species (50 accessions in total) to moderate drought, during 1 month in a greenhouse experiment, with a focus on root morphological, functional and molecular responses (transcriptomics and metabolomics). We identified variability among species in root osmotic adjustment, an important mechanism of drought tolerance[2]. The link between root osmotic potential and metabolites differentially accumulated in response to drought was analyzed. The results obtained in this work will help to identify new genetic resources to be used in rootstocks breeding programs to improve drought adaptation. In addition, we will provide tools to accelerate the screening of desirable traits in rootstocks using intermediate molecular phenotypes as proxies of complex root responses.

Acknowledgements:

We received funding from INRAE, University of Bordeaux (project PurVitis), Nouvelle-Aquitaine region (project VitiScope) and CNIV. We acknowledge Maria Lafargue, Cyril Hevin, Nicolas Hocquard and Jean-Pierre Petit for their help with the plant material preparation.

1)  Dong, Y.,et al. (2023). Dual domestications and origin of traits in grapevine evolution. Science, 379(6635), 892‑901.
2)  Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment, 40(1), 4‑10.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Marina de Miguel1*, Etienne R. Patin1, Elsa Chedid1, Enrique Saez-Laguna2, Ander del Sol Iturralde3, Usue Pérez-Lopez3, Jean-Pascal Tandonnet1, Pierre-François Bert1, Philippe Vivin1, Elisa Marguerit1, Sarah Cookson1, Nathalie Ollat1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2 INRAE, Univ. Bordeaux, BIOGECO, Cestas, France
3 Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, 48080, Bilbao, Spain

Contact the author*

Keywords

genetic variability, drought, metabolomics, osmotic adjustment, roots

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

The vineyard has experienced a general increase in yields mainly due to the elevated use of technology which caused a quality loss of grapes in more than one case. A large percentage of the Spanish vineyard is covered by a Denomination of Origin which limits the productive level of the vineyards as one of its regulations. The maximum production limit is a variable characteristic of each vineyard and is not usually regulated by agronomic criteria, and this explains the fact that each vineyard can reach high quality with a totally different yield from that set by the Denomination of Origin.

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].

Effect of riboflavin on the longevity of white and rosé wines

Light is a fundamental part at sales points which influences in the conservation of wines, particularly in those that are sold in transparent glass bottles such as rosé wines and increasingly white wines. The photochemical effect known as “light-struck taste” can cause changes in the aromatic characteristics of the wine. This “light-struck taste” is due to reactions triggered by the photochemical sensitivity of riboflavin (RBF).

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.