terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Abstract

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential. Thus, there is a scope for innovation in grapevine rootstock varieties by exploiting a wider range of wild Vitis species. The aim of this study was to investigate the drought adaptation potential of a wide range of previously unexplored wild Vitis species, integrating information at different biological scales: from genomics, transcriptomics and metabolomics to developmental and functional root traits. Our hypothesis is that metabolites can be considered as intermediate phenotypes in roots because they are expected to be mechanistically related to more complex root phenotypes. For these purposes, we investigated genetic differentiation between species and variability within species using SNPs obtained from Illumina paired-end whole genome sequencing (4k project)[1]. In addition, we characterized the response of cuttings from 12 American, Asian and Eurasian wild Vitis species (50 accessions in total) to moderate drought, during 1 month in a greenhouse experiment, with a focus on root morphological, functional and molecular responses (transcriptomics and metabolomics). We identified variability among species in root osmotic adjustment, an important mechanism of drought tolerance[2]. The link between root osmotic potential and metabolites differentially accumulated in response to drought was analyzed. The results obtained in this work will help to identify new genetic resources to be used in rootstocks breeding programs to improve drought adaptation. In addition, we will provide tools to accelerate the screening of desirable traits in rootstocks using intermediate molecular phenotypes as proxies of complex root responses.

Acknowledgements:

We received funding from INRAE, University of Bordeaux (project PurVitis), Nouvelle-Aquitaine region (project VitiScope) and CNIV. We acknowledge Maria Lafargue, Cyril Hevin, Nicolas Hocquard and Jean-Pierre Petit for their help with the plant material preparation.

1)  Dong, Y.,et al. (2023). Dual domestications and origin of traits in grapevine evolution. Science, 379(6635), 892‑901.
2)  Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment, 40(1), 4‑10.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Marina de Miguel1*, Etienne R. Patin1, Elsa Chedid1, Enrique Saez-Laguna2, Ander del Sol Iturralde3, Usue Pérez-Lopez3, Jean-Pascal Tandonnet1, Pierre-François Bert1, Philippe Vivin1, Elisa Marguerit1, Sarah Cookson1, Nathalie Ollat1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2 INRAE, Univ. Bordeaux, BIOGECO, Cestas, France
3 Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, 48080, Bilbao, Spain

Contact the author*

Keywords

genetic variability, drought, metabolomics, osmotic adjustment, roots

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Glutathione plays a key role in preventing some oxidative processes during winemaking. This molecule limits the must enzymatic oxidation, reacts with caffeic acid and generates a colourless compound that prevents subsequent browning. It also has a protective effect on wine aroma, preventing the oxidation of the volatile compounds with a high sensory impact.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.

Green pruning of shoots to force new sprouting of buds, in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

The context of climate crisis leads to the acceleration of technological ripening of grapes, with unsuitable loss of acidity, so various vineyard management alternatives are being considered to delay the grape ripening. The delay of the vegetative cycle towards a period of milder temperatures affects ripening, but vine behavior can vary according to the area, conduction, watering, variety, etc. A work is proposed to know the response to the green pruning of shoots, executed in fruit set and in pea size, in cv. Verdejo.