terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Abstract

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential. Thus, there is a scope for innovation in grapevine rootstock varieties by exploiting a wider range of wild Vitis species. The aim of this study was to investigate the drought adaptation potential of a wide range of previously unexplored wild Vitis species, integrating information at different biological scales: from genomics, transcriptomics and metabolomics to developmental and functional root traits. Our hypothesis is that metabolites can be considered as intermediate phenotypes in roots because they are expected to be mechanistically related to more complex root phenotypes. For these purposes, we investigated genetic differentiation between species and variability within species using SNPs obtained from Illumina paired-end whole genome sequencing (4k project)[1]. In addition, we characterized the response of cuttings from 12 American, Asian and Eurasian wild Vitis species (50 accessions in total) to moderate drought, during 1 month in a greenhouse experiment, with a focus on root morphological, functional and molecular responses (transcriptomics and metabolomics). We identified variability among species in root osmotic adjustment, an important mechanism of drought tolerance[2]. The link between root osmotic potential and metabolites differentially accumulated in response to drought was analyzed. The results obtained in this work will help to identify new genetic resources to be used in rootstocks breeding programs to improve drought adaptation. In addition, we will provide tools to accelerate the screening of desirable traits in rootstocks using intermediate molecular phenotypes as proxies of complex root responses.

Acknowledgements:

We received funding from INRAE, University of Bordeaux (project PurVitis), Nouvelle-Aquitaine region (project VitiScope) and CNIV. We acknowledge Maria Lafargue, Cyril Hevin, Nicolas Hocquard and Jean-Pierre Petit for their help with the plant material preparation.

1)  Dong, Y.,et al. (2023). Dual domestications and origin of traits in grapevine evolution. Science, 379(6635), 892‑901.
2)  Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment, 40(1), 4‑10.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Marina de Miguel1*, Etienne R. Patin1, Elsa Chedid1, Enrique Saez-Laguna2, Ander del Sol Iturralde3, Usue Pérez-Lopez3, Jean-Pascal Tandonnet1, Pierre-François Bert1, Philippe Vivin1, Elisa Marguerit1, Sarah Cookson1, Nathalie Ollat1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2 INRAE, Univ. Bordeaux, BIOGECO, Cestas, France
3 Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, 48080, Bilbao, Spain

Contact the author*

Keywords

genetic variability, drought, metabolomics, osmotic adjustment, roots

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2].

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.

Conventional and alternative pest management strategies: a comparative proteomic study on musts

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases.

Water availability at budbreak time in vineyards that are deficitary irrigated during the summer: Effect on must volatile composition


In recent years, Mediterranean regions are being affected by marked climate changes, primarily characterized by reduced precipitation, greater concurrence of temperature extremes and drought during the growing season, and increased inter-annual variability in temperatures and rainfall. Generally, high-quality red wines need moderate water deficit. Hence, irrigation may be needed to avoid severe vine water stress occurring in some vintages and soils with low holding capacity. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETO) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on must volatile composition at harvest.