terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Abstract

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential. Thus, there is a scope for innovation in grapevine rootstock varieties by exploiting a wider range of wild Vitis species. The aim of this study was to investigate the drought adaptation potential of a wide range of previously unexplored wild Vitis species, integrating information at different biological scales: from genomics, transcriptomics and metabolomics to developmental and functional root traits. Our hypothesis is that metabolites can be considered as intermediate phenotypes in roots because they are expected to be mechanistically related to more complex root phenotypes. For these purposes, we investigated genetic differentiation between species and variability within species using SNPs obtained from Illumina paired-end whole genome sequencing (4k project)[1]. In addition, we characterized the response of cuttings from 12 American, Asian and Eurasian wild Vitis species (50 accessions in total) to moderate drought, during 1 month in a greenhouse experiment, with a focus on root morphological, functional and molecular responses (transcriptomics and metabolomics). We identified variability among species in root osmotic adjustment, an important mechanism of drought tolerance[2]. The link between root osmotic potential and metabolites differentially accumulated in response to drought was analyzed. The results obtained in this work will help to identify new genetic resources to be used in rootstocks breeding programs to improve drought adaptation. In addition, we will provide tools to accelerate the screening of desirable traits in rootstocks using intermediate molecular phenotypes as proxies of complex root responses.

Acknowledgements:

We received funding from INRAE, University of Bordeaux (project PurVitis), Nouvelle-Aquitaine region (project VitiScope) and CNIV. We acknowledge Maria Lafargue, Cyril Hevin, Nicolas Hocquard and Jean-Pierre Petit for their help with the plant material preparation.

1)  Dong, Y.,et al. (2023). Dual domestications and origin of traits in grapevine evolution. Science, 379(6635), 892‑901.
2)  Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment, 40(1), 4‑10.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Marina de Miguel1*, Etienne R. Patin1, Elsa Chedid1, Enrique Saez-Laguna2, Ander del Sol Iturralde3, Usue Pérez-Lopez3, Jean-Pascal Tandonnet1, Pierre-François Bert1, Philippe Vivin1, Elisa Marguerit1, Sarah Cookson1, Nathalie Ollat1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2 INRAE, Univ. Bordeaux, BIOGECO, Cestas, France
3 Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, 48080, Bilbao, Spain

Contact the author*

Keywords

genetic variability, drought, metabolomics, osmotic adjustment, roots

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Vineyard management practices to reduce sugar content on ‘Monastrell’ grapes

Climate change is resulting in more dry and hot summers, accelerating grape ripening and increasing berry sugars concentration. This results in wines with a higher alcohol content, which has a negative impact on wine quality, as well as, on consumer health. Agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be defined. In this work, different management practices have been assessed on rainfed ‘Monastrell’ grapevines in Jumilla (Murcia, Spain) from 2021 to 2023 vintages. Mulching, shading, application of kaolin and different types of pruning were evaluated, among others field adaptation practices.

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Quantification of polysaccharides of variety Pomaces of the D.O.Ca Rioja

Pomace is one of the main residues generated by the wine industry and represents an environmental problem. Currently, there is a growing interest in the revaluation of these products because different bioactive compounds can be obtained from them, such as polyphenols, grape seed oils and polysaccharides. Red grape pomace can be an important source of polysaccharides, but they are currently little studied and even less with viable and environmental extraction processes (green extraction), such as flash extraction. The residual amount of the fraction rich in pectin (residual pulp) and component rich in hemicellulose in the pomace and the strength of association of the pectin with the cellulose-xyloglucan network depend on the degree of extractability of the polysaccharides in red winemaking and on the winemaking conditions.