terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Abstract

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential. Thus, there is a scope for innovation in grapevine rootstock varieties by exploiting a wider range of wild Vitis species. The aim of this study was to investigate the drought adaptation potential of a wide range of previously unexplored wild Vitis species, integrating information at different biological scales: from genomics, transcriptomics and metabolomics to developmental and functional root traits. Our hypothesis is that metabolites can be considered as intermediate phenotypes in roots because they are expected to be mechanistically related to more complex root phenotypes. For these purposes, we investigated genetic differentiation between species and variability within species using SNPs obtained from Illumina paired-end whole genome sequencing (4k project)[1]. In addition, we characterized the response of cuttings from 12 American, Asian and Eurasian wild Vitis species (50 accessions in total) to moderate drought, during 1 month in a greenhouse experiment, with a focus on root morphological, functional and molecular responses (transcriptomics and metabolomics). We identified variability among species in root osmotic adjustment, an important mechanism of drought tolerance[2]. The link between root osmotic potential and metabolites differentially accumulated in response to drought was analyzed. The results obtained in this work will help to identify new genetic resources to be used in rootstocks breeding programs to improve drought adaptation. In addition, we will provide tools to accelerate the screening of desirable traits in rootstocks using intermediate molecular phenotypes as proxies of complex root responses.

Acknowledgements:

We received funding from INRAE, University of Bordeaux (project PurVitis), Nouvelle-Aquitaine region (project VitiScope) and CNIV. We acknowledge Maria Lafargue, Cyril Hevin, Nicolas Hocquard and Jean-Pierre Petit for their help with the plant material preparation.

1)  Dong, Y.,et al. (2023). Dual domestications and origin of traits in grapevine evolution. Science, 379(6635), 892‑901.
2)  Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment, 40(1), 4‑10.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Marina de Miguel1*, Etienne R. Patin1, Elsa Chedid1, Enrique Saez-Laguna2, Ander del Sol Iturralde3, Usue Pérez-Lopez3, Jean-Pascal Tandonnet1, Pierre-François Bert1, Philippe Vivin1, Elisa Marguerit1, Sarah Cookson1, Nathalie Ollat1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2 INRAE, Univ. Bordeaux, BIOGECO, Cestas, France
3 Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, 48080, Bilbao, Spain

Contact the author*

Keywords

genetic variability, drought, metabolomics, osmotic adjustment, roots

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5].

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest.

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).

Investigating the Ancient Egyptian wines: The wine jars database

In Ancient Egypt, wine was a luxury product consumed mainly by the upper classes and the royal family and offered to gods in daily religious rituals in the temples.
Since the Predynastic (4000-3100 BC) period, wine jars were placed in tombs as funerary offerings. From the Old Kingdom (2680-2160 BC) to the Greco-Roman (332 BC-395 AD) period, viticulture and winemaking scenes were depicted on the private tombs’ walls. During the New Kingdom (1539-1075 BC), wine jars were inscribed to indicate: vintage year, product, quality, provenance, property and winemaker’s name and title.