terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Abstract

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Through Illumina whole genome sequencing of 53 Sémillon clones, we observed various genetic variations, including single nucleotide polymorphisms (SNPs), providing comprehensive insights into their diversity and genomic variations. Additionally, metabolic profiling of berries was established with a combination of chemical and Liquid Chromatography-Mass Spectrometry (LC-MS) analysis, allowing to quantify key quality-related parameters such as pH, acidity, sugar content and volatile thiol precursor compounds. Remarkably, our findings revealed significant variations among Sémillon clones, leading to their placing in three distinct clusters.

Moreover, phenotypic evaluations highlighted variations in mid-veraison dates, cluster yield, and berry weight. These findings have practical implications for winemakers and vineyard managers, enabling informed decisions in selecting specific clones with desirable traits to achieve desired wine styles and adapt to specific environments and market demands.

To unravel the underlying mechanisms behind the observed metabolomic and phenotypic variation within this Sémillon clonal population, comprehensive investigations of global metabolome profiles, epigenetic variations, and virome of the Sémillon clones will be conducted. Through the implementation of multi-omics approaches, we aim to obtain a comprehensive understanding of the Sémillon clonal population, unraveling complex regulatory networks and identifying factors that drive the unique characteristics of clones. This integrative approach will expand our knowledge beyond individual components and provides valuable insights into the intricate interplay among key players at various biological levels.

Acknowledgements: This study received financial support from the French government, to the University of Bordeaux as an Initiative of Excellence, under the France 2030 plan, for the GPR Bordeaux Plant Sciences.

References:

1) Catalogue of grapevines cultivated in France. http://plantgrape.plantnet-project.org

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Maryam Khalili1*, Pierre-François Bert1, Jean Pascal Goutouly1,2, Armelle Marais3, Thierry Candresse3, Maria Lafargue1, Christel Renaud1, Philippe Darriet4, Ghislaine Hilbert-Masson1, Philippe Gallusci1,Pierre Pétriacq3, Sabine Guillaumie1, Nathalie Ollat1, Josep Valls Fonayet4, Cécile Tibon4 and Eric Gomès1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France
2 Unité Expérimentale Vigne Bordeaux 1442, INRAE, 33140 Villenave d’Ornon, France

3 Univ. Bordeaux, INRAE, UMR 1332 BFP, 33140 Villenave D’Ornon, France
4 Enology, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France

Contact the author*

Keywords

Sémillon, genomics, metabolomics, diversity

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.

Agronomic behavior of three grape varieties in different planting density and irrigation treatments

In the O Ribeiro Denomination of Origin, there is a winemaking tradition of growing vines under a high-density plantation framework (8,920 vines/ha) and maintaining its vegetative cycle under rainfed conditions.
Currently, viticulture is advancing to plantation frames in which the density is considered medium (5,555 vines/ha), thus allowing mechanized work to be carried out for vineyard management operations. Although, the application of irrigation applied proportionally to the needs of the vegetative cycle of the vine, is a factor that increasingly helps a good development of the vine compared to the summer period, with increasingly uncertain weather forecasts.

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture.

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.

Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Implementing alternative grapevine systems that incorporate sustainable strategies and innovative farming practices is essential. However, we lack tools for measuring the impact of these new practices on the overall sustainability of vineyards. DEXi PM Vigne (Gary et al., 2015) is a tool developed for ex ante assessment of the sustainability of grapevine cropping systems, from the plot to the farm scale. In the present study, we focused on implementing new strategies of integrated crop protection management with limited pesticide use in vineyards.