terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Abstract

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Through Illumina whole genome sequencing of 53 Sémillon clones, we observed various genetic variations, including single nucleotide polymorphisms (SNPs), providing comprehensive insights into their diversity and genomic variations. Additionally, metabolic profiling of berries was established with a combination of chemical and Liquid Chromatography-Mass Spectrometry (LC-MS) analysis, allowing to quantify key quality-related parameters such as pH, acidity, sugar content and volatile thiol precursor compounds. Remarkably, our findings revealed significant variations among Sémillon clones, leading to their placing in three distinct clusters.

Moreover, phenotypic evaluations highlighted variations in mid-veraison dates, cluster yield, and berry weight. These findings have practical implications for winemakers and vineyard managers, enabling informed decisions in selecting specific clones with desirable traits to achieve desired wine styles and adapt to specific environments and market demands.

To unravel the underlying mechanisms behind the observed metabolomic and phenotypic variation within this Sémillon clonal population, comprehensive investigations of global metabolome profiles, epigenetic variations, and virome of the Sémillon clones will be conducted. Through the implementation of multi-omics approaches, we aim to obtain a comprehensive understanding of the Sémillon clonal population, unraveling complex regulatory networks and identifying factors that drive the unique characteristics of clones. This integrative approach will expand our knowledge beyond individual components and provides valuable insights into the intricate interplay among key players at various biological levels.

Acknowledgements: This study received financial support from the French government, to the University of Bordeaux as an Initiative of Excellence, under the France 2030 plan, for the GPR Bordeaux Plant Sciences.

References:

1) Catalogue of grapevines cultivated in France. http://plantgrape.plantnet-project.org

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Maryam Khalili1*, Pierre-François Bert1, Jean Pascal Goutouly1,2, Armelle Marais3, Thierry Candresse3, Maria Lafargue1, Christel Renaud1, Philippe Darriet4, Ghislaine Hilbert-Masson1, Philippe Gallusci1,Pierre Pétriacq3, Sabine Guillaumie1, Nathalie Ollat1, Josep Valls Fonayet4, Cécile Tibon4 and Eric Gomès1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France
2 Unité Expérimentale Vigne Bordeaux 1442, INRAE, 33140 Villenave d’Ornon, France

3 Univ. Bordeaux, INRAE, UMR 1332 BFP, 33140 Villenave D’Ornon, France
4 Enology, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France

Contact the author*

Keywords

Sémillon, genomics, metabolomics, diversity

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.