terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The weak role of organic mulches in shaping bacterial communities in grapevine

The weak role of organic mulches in shaping bacterial communities in grapevine

Abstract

The interest in sustainable and ecologic agricultural practices in grapevine has grown significantly in recent years in the context of ecological transition. Organic mulches are treatments that support the circular economy and positively affect the soil and the plant. They are an alternative to herbicides and other conventional practices since they may influence soil moisture, erosion, structure and weed control. However, their effects on the soil and must microbiota remain unknown. Understanding the relationship between vineyard management and soil and plant microbiota may help to choose the optimal practices, reducing environmental impact and improving wine quality. We aimed to evaluate the effects of five soil management treatments on soil and must bacterial communities along three consecutive years using next-generation sequencing (NGS) techniques. The study was performed in two vineyards of the same region (La Rioja, Spain). Two conventional treatments (Herbicide use and Under-row Tillage) were compared with three organic mulches applied on the vine row (Grapevine Pruning Debris, Spent Mushrooms Compost and Straw). The main factors affecting the soil bacterial community were year followed by location. The treatment effect on soil microbiota was weak and could only be found when analyzing each year and location individually. In particular, the bacterial communities of the conventional practices clustered in all years and locations. However, organic mulches were only grouped in the third year of study at both locations. Besides, the treatments did not affect the must bacterial communities and were driven by year and location. These results show that the practices have a weak effect compared to year or location and that their impact is detected in the soil but not in the must. Therefore, organic mulches could be a sustainable viticulture alternative. Moreover, the organic mulch effect has been enhanced over the years and farmers should use it in the long term.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

David Labarga1*, Andreu Mairata1, Miguel Puelles1, María de Toro3, Jordi Tronchoni2, Alicia Pou1

1Instituto de Ciencias de la Vid y del Vino, CSIC, Gobierno de la Rioja, Universidad de La Rioja, 26006 Logroño, Spain
2Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
3Centro de Investigación Biomédica de La Rioja (CIBIR), 26006, Logroño, Spain

Contact the author*

Keywords

microbiota, vineyard, herbicides, soil management and agriculture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.

Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Global warming is accelerating the technological ripening of the grape, with a loss of acidity, which requires that vineyard management can delay ripening to avoid it. The source-sink relation is essential for grape ripening, since it affects the distribution of photosynthates and substances derived from plant metabolism. A work is proposed to know the response of the vineyard to the drastic reduction of the foliar surface by trim down the shoots in cv.

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

Wine without added SO2: Oxygen impact and color evolution during red wine aging

SO2 play a major role in wine stability and evolution during its aging and storage. Winemaking without SO2 is a big challenge for the winemakers since the lack of SO2 affects directly the wine chemical evolution such as the aromas compounds as well as the phenolic compounds. During the red wine aging, phenolic compounds such as anthocyanin, responsible of the red wine colour, and tannins, responsible of the mouthfeel organoleptic properties of wine, evolved quickly from the winemaking process to aging [1]. A lot of new interaction and molecules occurred lead by oxygen[2] thus the lack of SO2 will induce wine properties changes. Nowadays, the phenolic composition of the wine without added SO2 have not been clearly reported.

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.