terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The weak role of organic mulches in shaping bacterial communities in grapevine

The weak role of organic mulches in shaping bacterial communities in grapevine

Abstract

The interest in sustainable and ecologic agricultural practices in grapevine has grown significantly in recent years in the context of ecological transition. Organic mulches are treatments that support the circular economy and positively affect the soil and the plant. They are an alternative to herbicides and other conventional practices since they may influence soil moisture, erosion, structure and weed control. However, their effects on the soil and must microbiota remain unknown. Understanding the relationship between vineyard management and soil and plant microbiota may help to choose the optimal practices, reducing environmental impact and improving wine quality. We aimed to evaluate the effects of five soil management treatments on soil and must bacterial communities along three consecutive years using next-generation sequencing (NGS) techniques. The study was performed in two vineyards of the same region (La Rioja, Spain). Two conventional treatments (Herbicide use and Under-row Tillage) were compared with three organic mulches applied on the vine row (Grapevine Pruning Debris, Spent Mushrooms Compost and Straw). The main factors affecting the soil bacterial community were year followed by location. The treatment effect on soil microbiota was weak and could only be found when analyzing each year and location individually. In particular, the bacterial communities of the conventional practices clustered in all years and locations. However, organic mulches were only grouped in the third year of study at both locations. Besides, the treatments did not affect the must bacterial communities and were driven by year and location. These results show that the practices have a weak effect compared to year or location and that their impact is detected in the soil but not in the must. Therefore, organic mulches could be a sustainable viticulture alternative. Moreover, the organic mulch effect has been enhanced over the years and farmers should use it in the long term.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

David Labarga1*, Andreu Mairata1, Miguel Puelles1, María de Toro3, Jordi Tronchoni2, Alicia Pou1

1Instituto de Ciencias de la Vid y del Vino, CSIC, Gobierno de la Rioja, Universidad de La Rioja, 26006 Logroño, Spain
2Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
3Centro de Investigación Biomédica de La Rioja (CIBIR), 26006, Logroño, Spain

Contact the author*

Keywords

microbiota, vineyard, herbicides, soil management and agriculture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Comparison of the effects of hormone- and natural-based elicitors on key metabolic pathways in cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of application of three elicitors (Vitalfit, Fruitel, and Protone) in Tempranillo.

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response.

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability.