terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The weak role of organic mulches in shaping bacterial communities in grapevine

The weak role of organic mulches in shaping bacterial communities in grapevine

Abstract

The interest in sustainable and ecologic agricultural practices in grapevine has grown significantly in recent years in the context of ecological transition. Organic mulches are treatments that support the circular economy and positively affect the soil and the plant. They are an alternative to herbicides and other conventional practices since they may influence soil moisture, erosion, structure and weed control. However, their effects on the soil and must microbiota remain unknown. Understanding the relationship between vineyard management and soil and plant microbiota may help to choose the optimal practices, reducing environmental impact and improving wine quality. We aimed to evaluate the effects of five soil management treatments on soil and must bacterial communities along three consecutive years using next-generation sequencing (NGS) techniques. The study was performed in two vineyards of the same region (La Rioja, Spain). Two conventional treatments (Herbicide use and Under-row Tillage) were compared with three organic mulches applied on the vine row (Grapevine Pruning Debris, Spent Mushrooms Compost and Straw). The main factors affecting the soil bacterial community were year followed by location. The treatment effect on soil microbiota was weak and could only be found when analyzing each year and location individually. In particular, the bacterial communities of the conventional practices clustered in all years and locations. However, organic mulches were only grouped in the third year of study at both locations. Besides, the treatments did not affect the must bacterial communities and were driven by year and location. These results show that the practices have a weak effect compared to year or location and that their impact is detected in the soil but not in the must. Therefore, organic mulches could be a sustainable viticulture alternative. Moreover, the organic mulch effect has been enhanced over the years and farmers should use it in the long term.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

David Labarga1*, Andreu Mairata1, Miguel Puelles1, María de Toro3, Jordi Tronchoni2, Alicia Pou1

1Instituto de Ciencias de la Vid y del Vino, CSIC, Gobierno de la Rioja, Universidad de La Rioja, 26006 Logroño, Spain
2Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
3Centro de Investigación Biomédica de La Rioja (CIBIR), 26006, Logroño, Spain

Contact the author*

Keywords

microbiota, vineyard, herbicides, soil management and agriculture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.

Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

The fortress of the Herodium, built towards the end of the first century BCE/ante Cristo, on the orders of Herod the Great, Roman client king of Judea, attests the expansion of Roman influence in the eastern Mediterranean. During archaeological excavations of the Herodium in 2017[1], a winery was discovered on the ground floor of the palace, with an assortment of clay vessels in situ, including large dolia – clay fermentation vessels each capable of fermenting up to 300-400 L of wine. Thanks to the recent progresses in the field of paleogenomics[2], we could analyse the organic material consistent with grape pomace at the bottom of these vessels, by extracting and sequencing the DNA using shotgun metagenomics and targeted capture, aiming for enrichment of DNA from fermentation associated microbes.

Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Grapevine cultivars are vegetatively propagated to preserve their varietal characteristics. However, spontaneous somatic variations that occur and are maintained during cycles of vegetative growth offer opportunities for the natural improvement of traditional grape cultivars. One advantageous trait for winegrowing is reduced bunch compactness, which decreases the susceptibility to pests and fungal diseases and favor an even berry ripening.

Aromatic characterization of Moscato Giallo by GC-MS/MS and stable isotopic ratio analysis of the major volatile compounds

Among the Moscato grapes, Moscato Giallo is a winegrape variety characterized by a high content of free and glycosylated monoterpenoids, which gives very aromatic wines. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, HO-trienol, HO-diols, 8-Hydroxylinalool, geranic acid and β-myrcene, that give citrus, rose, and peach notes.