terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

Abstract

The fortress of the Herodium, built towards the end of the first century BCE/ante Cristo, on the orders of Herod the Great, Roman client king of Judea, attests the expansion of Roman influence in the eastern Mediterranean. During archaeological excavations of the Herodium in 2017[1], a winery was discovered on the ground floor of the palace, with an assortment of clay vessels in situ, including large dolia – clay fermentation vessels each capable of fermenting up to 300-400 L of wine. Thanks to the recent progresses in the field of paleogenomics[2], we could analyse the organic material consistent with grape pomace at the bottom of these vessels, by extracting and sequencing the DNA using shotgun metagenomics and targeted capture, aiming for enrichment of DNA from fermentation associated microbes. After controlling for environmental and modern contamination, we successfully reconstructed and analysed the high-quality metagenome-assembled genomes (MAGs) from a phylogenetic and functional perspective. The phylogenetic signal of these ancient fermentation bacteria confirmed both their ancient origin and their affiliation to bacteria associated with wine fermentation. Gene functional analysis of the reconstructed fermentation-associated MAGs revealed an assortment of genes typically expected in lactic acid bacteria involved in wine fermentation, as well as genes involved in the production of wine spoilage compounds, especially in species typically viewed today as less desirable bacteria. Overall, our analysis brings a new appreciation of winemaking in Roman Judea and enriches our understanding of Roman accounts of flavouring wine with different herbs and aromatics, which may have been performed in part to mask the off-flavour compounds produced by bacterial wine spoilage genes.

Acknowledgements:

Werner Siemens Foundation (PALEOBIOTECHNOLOGY, funding M.B. and C.W.) and Deutsche Forschungsgemeinschaft (Balance of the Microverse, EXC 2051 #390713860, funding M.B. and C.W.)

References:

  1. Porat, R., Kalman, Y., Chachy, R., terem, shulamit, Bar-Natan, R., Ecker, A., Ben-Gedalya, T., Drori, E., & Weiss, E. (2018). Herod’s Royal Winery and Wine Storage Facility in the Outer Structure of the Mountain Palace-Fortress at Herodium. Qadmoniot (156, 106–1)
  2. Orlando, L., Allaby, R., Skoglund, P., Der Sarkissian, C., Stockhammer, P. W., Ávila-Arcos, M. C., Fu, Q., Krause, J., Willerslev, E., Stone, A. C., & Warinner, C. (2021). Ancient DNA analysis. Nature Reviews Methods Primers, 1(1), 14, DOI 10.1038/s43586-020-00011-0

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Maxime Borry1,2, Tziona Ben Gedalya3, Herodion Expedition4, Alexander Herbig1, Christina Warinner1,5,6

1Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
2Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
3Eastern R&D Center, Ariel University, Ariel, Israel
4Hebrew University
5Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany
6Department of Anthropology, Harvard University, Cambridge, MA, USA

Contact the author*

Keywords

roman, herod, judea, paleogenomics, metagenomics, genome, bacteria, ancient DNA

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

The under-trellis zone of vineyards is a sensitive area through which vines cover a significant portion of their nutrient and water needs. Mechanical and chemical methods are applied to suppress competing and tall-growing weeds to ensure optimal vine growth conditions. In addition to higher operating costs and depending on the soil conditions, these practices might lead to a long-term reduction in soil fertility and biodiversity. The presented study aims to analyse the suitability and interspecies competition of a selected green cover mixture of five local herbaceous species as potential green cover mixture in the under-trellis area of Lower Austrian vineyards.

Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

The vineyard has experienced a general increase in yields mainly due to the elevated use of technology which caused a quality loss of grapes in more than one case. A large percentage of the Spanish vineyard is covered by a Denomination of Origin which limits the productive level of the vineyards as one of its regulations. The maximum production limit is a variable characteristic of each vineyard and is not usually regulated by agronomic criteria, and this explains the fact that each vineyard can reach high quality with a totally different yield from that set by the Denomination of Origin.

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.