terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Abstract

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

This study focused on the spectral behavior and physiological changes in leaves of two grapevine cultivars, Riesling and Pinot Noir, that were subjected to different dehydration conditions. Dehydration rates varied from quick to medium and slow, examining the effect of time on the spectral and physiological response. The goal was to determine the potential role of time influencing the consistency of responses across different water dehydration conditions, and if drought stress symptoms could be detected through Vis-NIR analysis. The experimental design included four dehydration treatments: leaf dehydration by (i) detaching the leaves, (ii) cutting the stem from the roots, (iii) removing the soil from the root zone, and (iv) natural dehydration by irrigation withholding. By monitoring the spectral and physiological changes, the study aimed to assess the impact of different dehydration timings and the detectability of associated symptoms. Our results suggest that the timing of dehydration strongly influences the spectral signature changes. In instances under comparable water potentials, plants subjected to fast dehydration (e.g., stem cutting or detached leaves) displayed spectral patterns not significantly different as compared to the ones from adequately hydrated control plants. In contrast, plants undergoing gradual dehydration over several days (e.g., via irrigation withholding) exhibited spectral modifications consistent with previously documented findings.

Acknowledgements: Supported by the Projects DigiPlant and ImStress funded by NÖ Forschungs- und Bildungsges.mbH (NFB), Neue Herrengasse 10, 3rd floor, 3100 St. Pölten, Austria. We sincerely thank Rudi Rizzoli and Soma Laszlo Tarnay for their valuable contributions to the plants management, which played a crucial role in the research project.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Flagiello F.1*, Herrera J.C.2, Farolfi E.2, Innocenti J.2, Kulhánková A.3, Bodner G.1

1 Institute of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
2 Institute of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
3 Department of Horticulture, Faculty of Agrobiology, Food and Natural Resources, The Czech University of Life Sciences Prague, Prague 165 21, Czech Republic.

Contact the author*

Keywords

climate change, hyperspectral analysis, viticulture, drought stress, grapevine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Qualitative and productive characterization of a minority variety: ‘Branco lexítimo’ in DO Ribeira Sacra (Spain)

The actual climate changes, together with the strong regulation of the European Union and Spanish government, in search of sustainable viticulture, have forced the recovery of minority varieties, expanding the range of grape varieties, as well as the possible development of wines with unique profiles. In the Ribeira Sacra DO (Spain), a comparative study of the agronomic and qualitative behavior of the ‘Branco lexítimo’ variety has been carried out, compared to the majority white variety in the DO: ‘Godello’, located in the same study plot, with identic soil and climatic conditions. The study contemplated the analysis of phenology and leaf water potential, as well as the productive results and the analysis of the must quality, during four seasons: 2018 – 2021.

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.

Vertical cordon training system enhances yield and delays ripening in cv. Maturana Blanca

The growing interest in minority grape varieties is due to their potential for adaptation to global warming and their oenological capabilities. However, the cultivation of these varieties has often been limited due to their low economic efficiency. One such example is Maturana Blanca, a recently recovered and authorized minority grape variety in the DOCa Rioja region, known for its remarkable oenological potential but low productivity. This study aimed to increase the yield of Maturana Blanca by implementing the vertical cordon training system, which allowed for a higher number of buds per plant and an increased cluster count per vine.

Viticultural heritage in mountain territories of Catalonia: prospecting in the region of Osona, northern Spain

The recovery of ancestral or minority vine varieties has been gaining great interest in recent years, among other reasons because it is likely that some of these varieties, due to the fact that they are found in relict areas, have a greater potential for adaptation to external factors (biotic or abiotic) and can minimize the effects that climate change is causing in viticulture. Varieties that can be grown at altitude are currently being sought to combat rising temperatures and prolonged extreme drought conditions. In Catalonia, the Pyrenean expansion of vineyard cultivation is documented from the 10th century and has been related to the “small climatic optimum” (9th-12th centuries) and also to seigniorial power.[1] But different adverse climatic periods and the arrival of Phylloxera by the late 19th century made many of these crops disappear.[2]