terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Abstract

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD). Via pressure-volume (PV) curves and osmometer measurements we derived the leaf osmotic adjustment capability and TLP, while monitoring the plant gas exchange and water potential. Surprisingly, lower water potentials in WD vines throughout the season and in all situations (field and greenhouse) did not trigger osmoregulation, changes in TLP nor a modification of the modulus of elasticity. PV curves provided clear evidence that both temperature and water availability do not stimulate active osmotic adjustment in Vitis vinifera cv. Pinot Noir. Conversely, there is a clear impact of seasonal osmoregulation throughout the growing season2, decreasing the osmotic potential at full turgor by an average of 0.46 MPa in 90 days. Lack of osmotic adjustment in response to drought observed in this cultivar suggests Vitis genotypes have a broad spectrum of responses to drought and the strategy adopted to cope with it is highly dependent on the cultivar under analysis.

Acknowledgements:

The work was financially supported by the Austrian Science Fund (FWF): I 4848 “PlasticGrape”.

References:

1)  Bartlett, M. K., Scoffoni, C., & Sack, L. (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global metaanalysis. Ecology letters15(5), 393-405.

2)  Herrera, J. C., Calderan, A., Gambetta, G. A., Peterlunger, E., Forneck, A., Sivilotti, P., … & Hochberg, U. (2022). Stomatal responses in grapevine become increasingly more tolerant to low water potentials throughout the growing season. The Plant Journal109(4), 804-815.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Elena Farolfi1*, Francesco Flagiello2, Federica De Berardinis1, Soma Laszlo Tarnay1, Jan Reščič3, Astrid Forneck1, Jose Carlos Herrera1

1University of Natural Resources and Life Sciences, Vienna, Department of Crop Sciences, Institute of Viticulture and Pomology, 3430 Tulln an der Donau, Austria
2University of Natural Resources and Life Sciences, Vienna, Department of Crop Sciences, Institute of agronomy, 3430 Tulln an der Donau, Austria
3University of Nova Gorica, School for Viticulture and Enology, Dvorec Lanthieri/Lanthieri Mansion Glavni trg 8, 5271 Vipava, Slovenia

Contact the author*

Keywords

grapevine, drought, osmotic adjustment, osmoregulation, turgor loss point

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).

Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

“Sulphites” and mainly sulphur dioxide (SO2) is by far the most widely used additive (E-220/INS 220) in winemaking and likely the most difficult to replace. The well-known antioxidant, antioxidasic and antimicrobial properties of SO2 make this molecule a practically essential tool, not only in winemaking, but also in the production of other food products. The current trend in winemaking is the reduction of this unfriendly additive due to its negative effects on health and environmental. In particular, it could cause headaches and intolerance/allergic reactions in sensitive individuals. Wine is considered one of the major contributors of exposure of SO2 in the adult population, when this beverage is included in the diet.

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.

The exploitation of Croatian grapevine genetic resources for the breeding of new resistant cultivars 

Croatian viticulture is mainly based on native grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries to develop resistant varieties possessing high-quality levels. Native cultivars from Croatia are not included in the breeding programs of other countries.

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture.