terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Abstract

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD). Via pressure-volume (PV) curves and osmometer measurements we derived the leaf osmotic adjustment capability and TLP, while monitoring the plant gas exchange and water potential. Surprisingly, lower water potentials in WD vines throughout the season and in all situations (field and greenhouse) did not trigger osmoregulation, changes in TLP nor a modification of the modulus of elasticity. PV curves provided clear evidence that both temperature and water availability do not stimulate active osmotic adjustment in Vitis vinifera cv. Pinot Noir. Conversely, there is a clear impact of seasonal osmoregulation throughout the growing season2, decreasing the osmotic potential at full turgor by an average of 0.46 MPa in 90 days. Lack of osmotic adjustment in response to drought observed in this cultivar suggests Vitis genotypes have a broad spectrum of responses to drought and the strategy adopted to cope with it is highly dependent on the cultivar under analysis.

Acknowledgements:

The work was financially supported by the Austrian Science Fund (FWF): I 4848 “PlasticGrape”.

References:

1)  Bartlett, M. K., Scoffoni, C., & Sack, L. (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global metaanalysis. Ecology letters15(5), 393-405.

2)  Herrera, J. C., Calderan, A., Gambetta, G. A., Peterlunger, E., Forneck, A., Sivilotti, P., … & Hochberg, U. (2022). Stomatal responses in grapevine become increasingly more tolerant to low water potentials throughout the growing season. The Plant Journal109(4), 804-815.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Elena Farolfi1*, Francesco Flagiello2, Federica De Berardinis1, Soma Laszlo Tarnay1, Jan Reščič3, Astrid Forneck1, Jose Carlos Herrera1

1University of Natural Resources and Life Sciences, Vienna, Department of Crop Sciences, Institute of Viticulture and Pomology, 3430 Tulln an der Donau, Austria
2University of Natural Resources and Life Sciences, Vienna, Department of Crop Sciences, Institute of agronomy, 3430 Tulln an der Donau, Austria
3University of Nova Gorica, School for Viticulture and Enology, Dvorec Lanthieri/Lanthieri Mansion Glavni trg 8, 5271 Vipava, Slovenia

Contact the author*

Keywords

grapevine, drought, osmotic adjustment, osmoregulation, turgor loss point

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Global warming is accelerating the technological ripening of the grape, with a loss of acidity, which requires that vineyard management can delay ripening to avoid it. The source-sink relation is essential for grape ripening, since it affects the distribution of photosynthates and substances derived from plant metabolism. A work is proposed to know the response of the vineyard to the drastic reduction of the foliar surface by trim down the shoots in cv.

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

Overall conceptual characterization of aged dry white wines using a mental descriptive questionnaire

The purpose of the present study was to understand the overall concept of an aged dry white wine using a descriptive mental questionnaire. A total of 680 worldwide participants, grouped according to their involvement in the wine business, replied to an online questionnaire to characterize the sensory analytical and synthetic descriptors of an aged dry white wine. The descriptors were selected using a Check-All-That-Apply (CATA) approach concerning wine colour, aroma, taste, mouthfeel, and global appreciation.

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability.

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.