terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Barrels ad-hoc: Spanish oak wood classification by NIRs 

Barrels ad-hoc: Spanish oak wood classification by NIRs 

Abstract

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.

Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

CETEMAS studies Spanish origins oak (Q. petreae/robur) wood for cooperage. This is highly regarded by leading beverages manufacturer (wineries and whiskey distilleries). NIROB project led us to study the species, location and grain impact on the total phenol wood content, ellagitannin and volatile compounds profile, as well as the wood NIRs analysis implementation. After this study, it was concluded to modify the French grain classification scale for Spanish Quercus. Moreover, the first total phenol content prediction models were developed and applied on staves selection for wine barrels destined to a winery from PDO Vino de Cangas, with really good results.

During running NIRCHEM project, national and international oak are studied comparatively, improving the NIRs phenol content models and developing new ones to predict key compounds content for winemaker’s interest. The different origins oak chemical composition evolution is also studied depending on the seasoning and toasting.

Our goal is the wood knowledge before its selection, to choose the wood that best suits the characteristics sought by the wineries, offering a tool that allows this selection, enhancing and promoting, at the same time, the use of the country’s oak and its proper forest management.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Amelia González1*, Alba Fanjul2, Paula Pérez2, Claudia García2 & Juan Majada Guijo 2

1,2Forest and Wood Technology Research Centre (CETEMAS); Pumarabule S/N.33936.Siero. Asturias

Contact the author*

Keywords

oak wood selection, NIRs, phenolic content, organoleptic properties, cooperage

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Investigating the Ancient Egyptian wines: The wine jars database

In Ancient Egypt, wine was a luxury product consumed mainly by the upper classes and the royal family and offered to gods in daily religious rituals in the temples. Since the Predynastic (4000-3100 BC) period, wine jars were placed in tombs as funerary offerings. From the Old Kingdom (2680-2160 BC) to the Greco-Roman (332 BC-395 AD) period, viticulture and winemaking scenes were depicted on the private tombs’ walls. During the New Kingdom (1539-1075 BC), wine jars were inscribed to indicate: vintage year, product, quality, provenance, property and winemaker’s name and title.

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.