terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Barrels ad-hoc: Spanish oak wood classification by NIRs 

Barrels ad-hoc: Spanish oak wood classification by NIRs 

Abstract

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.

Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

CETEMAS studies Spanish origins oak (Q. petreae/robur) wood for cooperage. This is highly regarded by leading beverages manufacturer (wineries and whiskey distilleries). NIROB project led us to study the species, location and grain impact on the total phenol wood content, ellagitannin and volatile compounds profile, as well as the wood NIRs analysis implementation. After this study, it was concluded to modify the French grain classification scale for Spanish Quercus. Moreover, the first total phenol content prediction models were developed and applied on staves selection for wine barrels destined to a winery from PDO Vino de Cangas, with really good results.

During running NIRCHEM project, national and international oak are studied comparatively, improving the NIRs phenol content models and developing new ones to predict key compounds content for winemaker’s interest. The different origins oak chemical composition evolution is also studied depending on the seasoning and toasting.

Our goal is the wood knowledge before its selection, to choose the wood that best suits the characteristics sought by the wineries, offering a tool that allows this selection, enhancing and promoting, at the same time, the use of the country’s oak and its proper forest management.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Amelia González1*, Alba Fanjul2, Paula Pérez2, Claudia García2 & Juan Majada Guijo 2

1,2Forest and Wood Technology Research Centre (CETEMAS); Pumarabule S/N.33936.Siero. Asturias

Contact the author*

Keywords

oak wood selection, NIRs, phenolic content, organoleptic properties, cooperage

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].

Impact of climate on berry weight dynamics of a wide range of Vitis vinifera cultivars 

In order to study the impact of climate change on Bordeaux grape varieties and to assess the behavior of candidate grape varieties potentially better adapted to the new climatic conditions, an experimental vineyard composed of 52 grape varieties was planted in 2009 at the INRAE Bordeaux Aquitaine center[1]. Among the many parameters studied since 2012, berry weight for each variety was measured weekly from mid-veraison to maturity, with four independent replicates. The kinetics obtained allowed to study berry growth, a key parameter in grape composition and yield.

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.