terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Barrels ad-hoc: Spanish oak wood classification by NIRs 

Barrels ad-hoc: Spanish oak wood classification by NIRs 

Abstract

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.

Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

CETEMAS studies Spanish origins oak (Q. petreae/robur) wood for cooperage. This is highly regarded by leading beverages manufacturer (wineries and whiskey distilleries). NIROB project led us to study the species, location and grain impact on the total phenol wood content, ellagitannin and volatile compounds profile, as well as the wood NIRs analysis implementation. After this study, it was concluded to modify the French grain classification scale for Spanish Quercus. Moreover, the first total phenol content prediction models were developed and applied on staves selection for wine barrels destined to a winery from PDO Vino de Cangas, with really good results.

During running NIRCHEM project, national and international oak are studied comparatively, improving the NIRs phenol content models and developing new ones to predict key compounds content for winemaker’s interest. The different origins oak chemical composition evolution is also studied depending on the seasoning and toasting.

Our goal is the wood knowledge before its selection, to choose the wood that best suits the characteristics sought by the wineries, offering a tool that allows this selection, enhancing and promoting, at the same time, the use of the country’s oak and its proper forest management.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Amelia González1*, Alba Fanjul2, Paula Pérez2, Claudia García2 & Juan Majada Guijo 2

1,2Forest and Wood Technology Research Centre (CETEMAS); Pumarabule S/N.33936.Siero. Asturias

Contact the author*

Keywords

oak wood selection, NIRs, phenolic content, organoleptic properties, cooperage

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers.

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.