OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Impact of grape maturity on esters content and sensory characters in wines fermented with yeast strains of different genetic backgrounds

Impact of grape maturity on esters content and sensory characters in wines fermented with yeast strains of different genetic backgrounds

Abstract

Grapes composition is a factor well known to affect wines composition and sensory expression. The goal of this study was to evaluate how grapes composition modifications linked to maturity level could affect wines aromatic expression and esters composition. An experimental design has been developed from grapes of Vitis vinifera cv Merlot. On each vine plot, grapes have been harvested at two maturity levels and then have been fermented under standardized condition with two yeast strains : a commercial one and another obtained by deletion of the four main esterases of the previous one. Fermentation performed with the esterases deletes strain led to wines with main ester levels generally lower by a factor 5 to 10 in comparison with the original strain.

Merlot wines from the highest maturity level and fermented with the commercial strain shown lower concentrations for fatty acids ethyl esters and higher alcohol acetates but higher concentrations for some substituted ethyl esters like ethyl leucate. When fermentations were performed with an esterases deleted strain, all esters contents remained the same.

Sensory analysis confirmed these results. For the wines fermented with the commercial strain, when the maturity increased, wine fruity aromatic expression decreased (particularly its global intensity and the fresh, redberry- and fermentative fruits character) whereas when the fermentation was performed by the deleted strain wines fruity characteristics were the same.

Aromatic reconstitution performed, on one hand, to erase the consequences of maturity differences and, on the other hand, to erase the consequences of the strain performing alcoholic fermentation on esters contents showed that esters were not, alone, responsible for the difference of sensory characteristics for wines from very ripe grapes (particularly for the jammy fruit notes) but that their presence was essential for the perception of this difference. 

Our results highlight once again the role of esters in the overall wine fruity aromatic expression and underline their indirect importance in the perception of some varietal characteristics through perceptive interaction phenomena.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Jean-Christophe Barbe, Marine Trujillo, Marina Bely, Warren Albertin, Isabelle Masneuf-Pomarede, Benoit Colonna, Philippe Marullo

Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France.
UMR EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, ISVV, Villenave d’Ornon, France.
Pernod Ricard, Créteil, France.
Biolaffort, Bordeaux, France.

Contact the author

Keywords

Wine aroma, Esters, Maturity, Saccharomyces cerevisiae 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.

Satellite imagery : a tool for large scale vineyard management

Remote sensing, using Near Infra Red wavelength, can characterize within-vineyard variability using vegetation index. Between 2007 and 2009, a study was led on the vineyards of a cooperative winery, in Fitou area (France) aiming at characterizing vineyard oenological potential. A vegetation index, green leaf cover, developed on crops (wheat, rice, corn…) was implemented on vineyards.

European consumer preference for wines made from fungus resistant grape varieties

Fungus resistant grape varieties (FRGV or PIWI) offer many benefits such as less pesticide use or premium prices for enhanced sustainability. Still, winemakers are concerned about inferior wine quality. This study evaluates how European wine consumers assess wines made from new FRGVs in comparison to traditional V. vinifera varieties. Most of them were grown in the same vineyard. Four white (Calardis Blanc, Muscaris, Sauvignac, Cabernet Blanc) und three red (Satin Noir, Cabernet Cortis, Laurot) FRGV were compared to Riesling, Sauvignon blanc, Muskateller, Cab. Sauvignon and Merlot. For each FRGV, different styles were vinified using standardized protocols.

Influence of soil type on juice quality in a vineyard from DO Ca Rioja

Soil plays an important role in wine quality, especially its water holding capacity because it affects the balance between vigour and grape yield. The aim of this work was to study the influence of different soil types on the must quality in a vineyard at DO Ca Rioja

THE EFFECT OF PRE-FERMENTATIVE GLYPHOSATE ADDITION ON THE METABOLITE PROFILE OF WINE

The synthetic herbicide glyphosate has been used extensively in viticulture over many decades to combat weeds. Despite this, the possible influence of residual glyphosate on both the alcoholic fermentation of grape juice and the subsequent metabolite profile of wines has not been investigated. In this study, Pinot noir juice supplemented with different concentrations of glyphosate (0 µg L-1, 10 µg L-1 and 1000 µg L-1) was fermented with commercial Saccharomyces cerevisiae yeast strains. Using a combination of analytical methods, 80 metabolites were quantified in the resulting wines.