terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Prediction of aromatic attributes of red wines from its colour properties 

Prediction of aromatic attributes of red wines from its colour properties 

Abstract

Wine perception is a multisensory experience that makes use of the sight, smell, and taste senses. When wine is sensorially assessed, the stimulus received generates multiple signals that tasters convert into organoleptic descriptors. Colour is commonly the first attribute evaluated during wine tasting. Moreover, the colour properties provide the taster with a priori information of the wine’s aroma. This preconceived perception is later confirmed or denied during the aroma evaluation. The aim of this study was therefore to investigate if the wine’s colour properties contain information relevant to the aromatic expression of red wines. To simulate the colour perception of a wine taster, RGB images were taken from 50 wines in both a static position and after a fixed inclination of the wine holder was applied. The aroma properties of the wines were assessed using a tasting sheet adapted to the wine aroma evaluation method used for teaching activities. Attributes such as the main central note, secondary notes, primary and secondary groups of aromas and finally the specific aroma descriptors were collected. Two levels of intensity (low and high) were also assigned to the specific aroma descriptors. The aroma evaluation of the wines was conducted in dark glasses to avoid biases in the responses. After multivariate data analysis and feature extraction, the relevant information of the RGB images was correlated with the aromatic descriptors using neural networks techniques. The results obtained showed certain ability of the wine’s colour properties to predict some of the major aromatic descriptors, proving that relevant information to wine aroma is contained within the colour properties of the wines. This study reaffirmed the multisensory nature of wine tasting and the potential value of using colour properties together with aromatic information to replicate wine aroma from chemical data.  

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Jose Luis Aleixandre-Tudo1,2*, Samuel Verdú1: Raúl Grau1

1Instituto de Ingeniería de Alimentos (FoodUPV), Departamento de Tecnología de Alimentos, Universidad Politécnica de Valencia, Valencia, Spain
2South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa

Contact the author*

Keywords

multisensory experience, colour, RGB images, aroma, neural networks

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane.

Genetic variation among wild grapes native to Japan

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan. A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan.

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers.

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method.