terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Prediction of aromatic attributes of red wines from its colour properties 

Prediction of aromatic attributes of red wines from its colour properties 

Abstract

Wine perception is a multisensory experience that makes use of the sight, smell, and taste senses. When wine is sensorially assessed, the stimulus received generates multiple signals that tasters convert into organoleptic descriptors. Colour is commonly the first attribute evaluated during wine tasting. Moreover, the colour properties provide the taster with a priori information of the wine’s aroma. This preconceived perception is later confirmed or denied during the aroma evaluation. The aim of this study was therefore to investigate if the wine’s colour properties contain information relevant to the aromatic expression of red wines. To simulate the colour perception of a wine taster, RGB images were taken from 50 wines in both a static position and after a fixed inclination of the wine holder was applied. The aroma properties of the wines were assessed using a tasting sheet adapted to the wine aroma evaluation method used for teaching activities. Attributes such as the main central note, secondary notes, primary and secondary groups of aromas and finally the specific aroma descriptors were collected. Two levels of intensity (low and high) were also assigned to the specific aroma descriptors. The aroma evaluation of the wines was conducted in dark glasses to avoid biases in the responses. After multivariate data analysis and feature extraction, the relevant information of the RGB images was correlated with the aromatic descriptors using neural networks techniques. The results obtained showed certain ability of the wine’s colour properties to predict some of the major aromatic descriptors, proving that relevant information to wine aroma is contained within the colour properties of the wines. This study reaffirmed the multisensory nature of wine tasting and the potential value of using colour properties together with aromatic information to replicate wine aroma from chemical data.  

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Jose Luis Aleixandre-Tudo1,2*, Samuel Verdú1: Raúl Grau1

1Instituto de Ingeniería de Alimentos (FoodUPV), Departamento de Tecnología de Alimentos, Universidad Politécnica de Valencia, Valencia, Spain
2South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa

Contact the author*

Keywords

multisensory experience, colour, RGB images, aroma, neural networks

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Characterization of non-cultivated wild grapevines in Extremadura (Spain) 

Several Eurasian wild grapevine populations were found along Extremadura region (southwestern Spain). For conservation and study, one individual from four different populations (named L1, L2, L5 and L6) was vegetatively propagated and planted at Instituto de Investigaciones Agrarias Finca La Orden (CICYTEX), Badajoz. The aim of the present work was to characterize those conserved individuals from four different populations based on both an ampelographic description and a molecular analysis. Three vines per individual were studied.

Conventional and alternative pest management strategies: a comparative proteomic study on musts

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1]

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.