terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Abstract

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.

In this study, we monitored the expression of esca disease foliar symptom at the plant level for six years, on 46 cultivars planted in an experimental common garden in Bordeaux[2]. First, a large gradient of varietal susceptibility was highlighted, with an average prevalence ranging from 0 to 24% of vines expressing esca foliar symptom per variety. This gradient was rather consistent across vintages, and the prevalence of grapevine dieback was significantly correlated with that of the leaf symptoms.

Secondly, we explored the relationships between esca disease prevalence and phenological and physiological traits phenotyped in the same plot. A negative correlation between δ13C and esca disease prevalence was demonstrated at the cultivar level, suggesting that varieties with higher water use efficiency are less prone to express esca. Moreover, our results suggest that low-vigour cultivars could be classified among the less susceptible ones, although these trends require further investigation. In contrast, neither phenological stages nor nitrogen status seem to be significant predictors of cultivar susceptibility to the disease.

Together, these results provide new insights into the potential of genetic resources for sustainable trunk diseases management, while opening up new perspectives for studying pathological and physiological determinants of their incidence.

Acknowledgements:

The authors would like to thank the teams from UE Vigne Bordeaux, SAVE and EGFV. This long-term monitoring was supported by the French Ministère de l’Enseignement Supérieur et de la Recherche, Château-Figeac (Saint-Emilion), PNDV (FranceAgrimer-CNIV), CIVB, Région Nouvelle-Aquitaine & INRAE.

References:

1) Gramaje D. et al. (2018) Managing Grapevine Trunk Diseases With Respect to Etiology and Epidemiology: Current Strategies and Future Prospects. Plant Disease, 102: 12-39, DOI 10.1094/PDIS-04-17-0512-FE

2) Destrac-Irvine A. and van Leeuwen C. (2016) VitAdapt: an experimental program to study the behavior of a wide range of Vitis vinifera varieties in a context of climate change in the Bordeaux vineyards.Climwine, sustainable grape and wine production in the context of climate change, 11-13 April 2016, Bordeaux. Full text proceedings paper, 165-171.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Pierre GASTOU1,2*, Agnès DESTRAC IRVINE3, Cornelis VAN LEEUWEN3, Chloé DELMAS1

1SAVE, INRAE, Bordeaux Sciences Agro, ISVV, F-33882 Villenave d’Ornon, France
2Département Sciences de l’Environnement, Univ. Bordeaux, F-33405 Talence, France

3EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France

Contact the author*

Keywords

Grapevine Trunk Disease, multi-trait phenotyping, pathogenicity, phenotypic diversity, Vitis vinifera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response.

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]