terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Abstract

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.

In this study, we monitored the expression of esca disease foliar symptom at the plant level for six years, on 46 cultivars planted in an experimental common garden in Bordeaux[2]. First, a large gradient of varietal susceptibility was highlighted, with an average prevalence ranging from 0 to 24% of vines expressing esca foliar symptom per variety. This gradient was rather consistent across vintages, and the prevalence of grapevine dieback was significantly correlated with that of the leaf symptoms.

Secondly, we explored the relationships between esca disease prevalence and phenological and physiological traits phenotyped in the same plot. A negative correlation between δ13C and esca disease prevalence was demonstrated at the cultivar level, suggesting that varieties with higher water use efficiency are less prone to express esca. Moreover, our results suggest that low-vigour cultivars could be classified among the less susceptible ones, although these trends require further investigation. In contrast, neither phenological stages nor nitrogen status seem to be significant predictors of cultivar susceptibility to the disease.

Together, these results provide new insights into the potential of genetic resources for sustainable trunk diseases management, while opening up new perspectives for studying pathological and physiological determinants of their incidence.

Acknowledgements:

The authors would like to thank the teams from UE Vigne Bordeaux, SAVE and EGFV. This long-term monitoring was supported by the French Ministère de l’Enseignement Supérieur et de la Recherche, Château-Figeac (Saint-Emilion), PNDV (FranceAgrimer-CNIV), CIVB, Région Nouvelle-Aquitaine & INRAE.

References:

1) Gramaje D. et al. (2018) Managing Grapevine Trunk Diseases With Respect to Etiology and Epidemiology: Current Strategies and Future Prospects. Plant Disease, 102: 12-39, DOI 10.1094/PDIS-04-17-0512-FE

2) Destrac-Irvine A. and van Leeuwen C. (2016) VitAdapt: an experimental program to study the behavior of a wide range of Vitis vinifera varieties in a context of climate change in the Bordeaux vineyards.Climwine, sustainable grape and wine production in the context of climate change, 11-13 April 2016, Bordeaux. Full text proceedings paper, 165-171.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Pierre GASTOU1,2*, Agnès DESTRAC IRVINE3, Cornelis VAN LEEUWEN3, Chloé DELMAS1

1SAVE, INRAE, Bordeaux Sciences Agro, ISVV, F-33882 Villenave d’Ornon, France
2Département Sciences de l’Environnement, Univ. Bordeaux, F-33405 Talence, France

3EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France

Contact the author*

Keywords

Grapevine Trunk Disease, multi-trait phenotyping, pathogenicity, phenotypic diversity, Vitis vinifera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Cumulative effect of deficit irrigation and salinity on vine responses

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen).

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.