terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Abstract

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.

In this study, we monitored the expression of esca disease foliar symptom at the plant level for six years, on 46 cultivars planted in an experimental common garden in Bordeaux[2]. First, a large gradient of varietal susceptibility was highlighted, with an average prevalence ranging from 0 to 24% of vines expressing esca foliar symptom per variety. This gradient was rather consistent across vintages, and the prevalence of grapevine dieback was significantly correlated with that of the leaf symptoms.

Secondly, we explored the relationships between esca disease prevalence and phenological and physiological traits phenotyped in the same plot. A negative correlation between δ13C and esca disease prevalence was demonstrated at the cultivar level, suggesting that varieties with higher water use efficiency are less prone to express esca. Moreover, our results suggest that low-vigour cultivars could be classified among the less susceptible ones, although these trends require further investigation. In contrast, neither phenological stages nor nitrogen status seem to be significant predictors of cultivar susceptibility to the disease.

Together, these results provide new insights into the potential of genetic resources for sustainable trunk diseases management, while opening up new perspectives for studying pathological and physiological determinants of their incidence.

Acknowledgements:

The authors would like to thank the teams from UE Vigne Bordeaux, SAVE and EGFV. This long-term monitoring was supported by the French Ministère de l’Enseignement Supérieur et de la Recherche, Château-Figeac (Saint-Emilion), PNDV (FranceAgrimer-CNIV), CIVB, Région Nouvelle-Aquitaine & INRAE.

References:

1) Gramaje D. et al. (2018) Managing Grapevine Trunk Diseases With Respect to Etiology and Epidemiology: Current Strategies and Future Prospects. Plant Disease, 102: 12-39, DOI 10.1094/PDIS-04-17-0512-FE

2) Destrac-Irvine A. and van Leeuwen C. (2016) VitAdapt: an experimental program to study the behavior of a wide range of Vitis vinifera varieties in a context of climate change in the Bordeaux vineyards.Climwine, sustainable grape and wine production in the context of climate change, 11-13 April 2016, Bordeaux. Full text proceedings paper, 165-171.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Pierre GASTOU1,2*, Agnès DESTRAC IRVINE3, Cornelis VAN LEEUWEN3, Chloé DELMAS1

1SAVE, INRAE, Bordeaux Sciences Agro, ISVV, F-33882 Villenave d’Ornon, France
2Département Sciences de l’Environnement, Univ. Bordeaux, F-33405 Talence, France

3EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France

Contact the author*

Keywords

Grapevine Trunk Disease, multi-trait phenotyping, pathogenicity, phenotypic diversity, Vitis vinifera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Exploring the prevalence of esca-induced leaf symptoms in French vineyards and the role of climate: a national scale analysis

Esca, a severe trunk disease affecting vineyards, is caused by fungal pathogens that induce wood necrosis and decay, leaf symptoms, yield losses, and potentially a rapid death of the vine. The prevalence of this disease varies across years, regions, cultivars, and plot ages. Despite its significance in understanding and predicting dieback risk in different vineyards, the role of climate in trunk diseases remains a relatively unexplored research area. While some studies have demonstrated the impact of certain climatic conditions on the prevalence of the disease, they often focus on a limited number of plots and yield conflicting results.We conducted a statistical analysis, using a Bayesian approach on a national database comprising prevalence data of esca from over 500 different plots in France, spanning the years 2003 to 2022 and encompassing various cultivars.

Comparison of the effects of hormone- and natural-based elicitors on key metabolic pathways in cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of application of three elicitors (Vitalfit, Fruitel, and Protone) in Tempranillo.

Development and validation of a free solvent UHPLC/MS-MS method to analyse melatonin and its precursors in Spanish commercial wines  

Melatonin is a bioactive compound present in foods and beverages such as wines. During alcoholic fermentation, yeast transforms tryptophan into certain indole compounds, including melatonin. This paper aims to develop and validate a free solvent analytical method by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC/MS-MS) to determine melatonin and its precursors (L-tryptophan, tryptamine, serotonin, tryptophol, N-acetylserotonin, 5-hydroxytryptophan, and 3- indoleacetic) that appropriately prevent the matrix effect.

Evaluation of the effects of pruning methodology on the development of young vines 

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines.