terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Abstract

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.

In this study, we monitored the expression of esca disease foliar symptom at the plant level for six years, on 46 cultivars planted in an experimental common garden in Bordeaux[2]. First, a large gradient of varietal susceptibility was highlighted, with an average prevalence ranging from 0 to 24% of vines expressing esca foliar symptom per variety. This gradient was rather consistent across vintages, and the prevalence of grapevine dieback was significantly correlated with that of the leaf symptoms.

Secondly, we explored the relationships between esca disease prevalence and phenological and physiological traits phenotyped in the same plot. A negative correlation between δ13C and esca disease prevalence was demonstrated at the cultivar level, suggesting that varieties with higher water use efficiency are less prone to express esca. Moreover, our results suggest that low-vigour cultivars could be classified among the less susceptible ones, although these trends require further investigation. In contrast, neither phenological stages nor nitrogen status seem to be significant predictors of cultivar susceptibility to the disease.

Together, these results provide new insights into the potential of genetic resources for sustainable trunk diseases management, while opening up new perspectives for studying pathological and physiological determinants of their incidence.

Acknowledgements:

The authors would like to thank the teams from UE Vigne Bordeaux, SAVE and EGFV. This long-term monitoring was supported by the French Ministère de l’Enseignement Supérieur et de la Recherche, Château-Figeac (Saint-Emilion), PNDV (FranceAgrimer-CNIV), CIVB, Région Nouvelle-Aquitaine & INRAE.

References:

1) Gramaje D. et al. (2018) Managing Grapevine Trunk Diseases With Respect to Etiology and Epidemiology: Current Strategies and Future Prospects. Plant Disease, 102: 12-39, DOI 10.1094/PDIS-04-17-0512-FE

2) Destrac-Irvine A. and van Leeuwen C. (2016) VitAdapt: an experimental program to study the behavior of a wide range of Vitis vinifera varieties in a context of climate change in the Bordeaux vineyards.Climwine, sustainable grape and wine production in the context of climate change, 11-13 April 2016, Bordeaux. Full text proceedings paper, 165-171.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Pierre GASTOU1,2*, Agnès DESTRAC IRVINE3, Cornelis VAN LEEUWEN3, Chloé DELMAS1

1SAVE, INRAE, Bordeaux Sciences Agro, ISVV, F-33882 Villenave d’Ornon, France
2Département Sciences de l’Environnement, Univ. Bordeaux, F-33405 Talence, France

3EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France

Contact the author*

Keywords

Grapevine Trunk Disease, multi-trait phenotyping, pathogenicity, phenotypic diversity, Vitis vinifera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response.

Characterization of spoilage yeasts from Malbec grapes from San Rafael wine region (Argentina)

The yeast ecosystem in grape musts is quite broad and depends on the region and the health of the grapes. Within this, there are yeasts that can generate fermentative deviations and/or cause defects in the wine. It is very important to address this issue because there are significant economic losses in the wine industry when the fermentation process and/or the organoleptic characteristics of the wine are negatively affected, even more today since climate change has a marked effect on the composition of this ecosystem. The aim of this work is to characterize the behavior regarding detrimental oenological features of potential spoilage yeasts isolated from viticultural environments.

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements. In each condition, the same two wines were blind tasted: a wine previously defined as delicate – a Pinot Noir from Australia, and a wine known for its robust character – a Tannat from Uruguay.

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.