terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Abstract

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses. Therefore, we tested the effect of Ta SC1and Bs PTA-271, on grapevine rhizosphere bacterial and fungal microbiome, and plant gene expression, in two different soil types (clay and sandy soil). Additionally, we specifically quantified Ta SC1 and Bs PTA-271 in rhizosphere of both soil types. To do that, we used novel molecular approaches, such as high-throughput amplicon sequencing (HTAS), droplet digital PCR (ddPCR) and real-time PCR (qPCR). The results suggest that Bs PTA-271 established better in clay soil, where although its quantity was low at 30dpi, it was maintained at 90dpi. In contrast, Ta SC1 established better in sandy soil, with a lower quantity, that increased overtime. Regarding the BCAs impact on rhizosphere microbiome, bacterial diversity was not affected by any BCA application. However, inoculations with Ta SC1 significantly reduced fungal diversity. Ta SC1 applications affected the relationships between microorganisms, however this effect was clearer in clay soil. According to the selected plant defense markers, plants living in sandy soil appeared more impacted to BCA inoculation. Ta SC1 plants treated in sandy soil demonstrated a strong suppression defense genes 24hpi, that conversed in strong simulated defenses 4dpi, with a significant overexpression of PAL and STS. On the other hand, in clay soil, BCA-treated plants showed a slight increase in the expression of plant defense genes 24hpi, that intensifies 4dpi. In conclusion, the effect of Bs PTA-271 and Ta SC1 in grapevine rhizosphere appears to be soil-dependent, where a sandy soil favors the fungal BCA (Ta SC1) establishment, while a clay soil favors the bacterial BCA (Bs PTA-271) establishment.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Catarina Leal1, Rebeca Bujanda1, Josep Armengol2, Patricia Trotel-Aziz3, Florence Fontaine3, Ales Eichmeier4, David Gramaje1

1Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas – Universidad de la Rioja – Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain
2Instituto Agroflorestal Mediterráneo, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
3University of Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes Research Unit, EA 4707, INRAE USC 1488, SFR Condorcet FR CNRS 3417, Reims, France
4Mendeleum—Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44 Lednice, Czech Republic

Contact the author*

Keywords

Bacillus spp., biocontrol, ddPCR, grapevine, microbiome, next generation sequencing, rhizosphere, Trichoderma spp.

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

The under-trellis zone of vineyards is a sensitive area through which vines cover a significant portion of their nutrient and water needs. Mechanical and chemical methods are applied to suppress competing and tall-growing weeds to ensure optimal vine growth conditions. In addition to higher operating costs and depending on the soil conditions, these practices might lead to a long-term reduction in soil fertility and biodiversity. The presented study aims to analyse the suitability and interspecies competition of a selected green cover mixture of five local herbaceous species as potential green cover mixture in the under-trellis area of Lower Austrian vineyards.

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.