terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Abstract

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses. Therefore, we tested the effect of Ta SC1and Bs PTA-271, on grapevine rhizosphere bacterial and fungal microbiome, and plant gene expression, in two different soil types (clay and sandy soil). Additionally, we specifically quantified Ta SC1 and Bs PTA-271 in rhizosphere of both soil types. To do that, we used novel molecular approaches, such as high-throughput amplicon sequencing (HTAS), droplet digital PCR (ddPCR) and real-time PCR (qPCR). The results suggest that Bs PTA-271 established better in clay soil, where although its quantity was low at 30dpi, it was maintained at 90dpi. In contrast, Ta SC1 established better in sandy soil, with a lower quantity, that increased overtime. Regarding the BCAs impact on rhizosphere microbiome, bacterial diversity was not affected by any BCA application. However, inoculations with Ta SC1 significantly reduced fungal diversity. Ta SC1 applications affected the relationships between microorganisms, however this effect was clearer in clay soil. According to the selected plant defense markers, plants living in sandy soil appeared more impacted to BCA inoculation. Ta SC1 plants treated in sandy soil demonstrated a strong suppression defense genes 24hpi, that conversed in strong simulated defenses 4dpi, with a significant overexpression of PAL and STS. On the other hand, in clay soil, BCA-treated plants showed a slight increase in the expression of plant defense genes 24hpi, that intensifies 4dpi. In conclusion, the effect of Bs PTA-271 and Ta SC1 in grapevine rhizosphere appears to be soil-dependent, where a sandy soil favors the fungal BCA (Ta SC1) establishment, while a clay soil favors the bacterial BCA (Bs PTA-271) establishment.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Catarina Leal1, Rebeca Bujanda1, Josep Armengol2, Patricia Trotel-Aziz3, Florence Fontaine3, Ales Eichmeier4, David Gramaje1

1Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas – Universidad de la Rioja – Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain
2Instituto Agroflorestal Mediterráneo, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
3University of Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes Research Unit, EA 4707, INRAE USC 1488, SFR Condorcet FR CNRS 3417, Reims, France
4Mendeleum—Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44 Lednice, Czech Republic

Contact the author*

Keywords

Bacillus spp., biocontrol, ddPCR, grapevine, microbiome, next generation sequencing, rhizosphere, Trichoderma spp.

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability.

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.

Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Multiple sclerosis (MS) is a multifactorial autoimmune disease associating demyelination and axonal degeneration developing in young adults and affecting 2–3 million people worldwide. Plant polyphenols endowed with many therapeutic benefits associated with anti-inflammatory and antioxidant properties represent highly interesting new potential therapeutic strategies. We recently showed the safety and high efficiency of grape seed extract (GSE), a complex mixture of polyphenolics compounds comprising notably flavonoids and proanthocyanidins, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.