terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Abstract

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses. Therefore, we tested the effect of Ta SC1and Bs PTA-271, on grapevine rhizosphere bacterial and fungal microbiome, and plant gene expression, in two different soil types (clay and sandy soil). Additionally, we specifically quantified Ta SC1 and Bs PTA-271 in rhizosphere of both soil types. To do that, we used novel molecular approaches, such as high-throughput amplicon sequencing (HTAS), droplet digital PCR (ddPCR) and real-time PCR (qPCR). The results suggest that Bs PTA-271 established better in clay soil, where although its quantity was low at 30dpi, it was maintained at 90dpi. In contrast, Ta SC1 established better in sandy soil, with a lower quantity, that increased overtime. Regarding the BCAs impact on rhizosphere microbiome, bacterial diversity was not affected by any BCA application. However, inoculations with Ta SC1 significantly reduced fungal diversity. Ta SC1 applications affected the relationships between microorganisms, however this effect was clearer in clay soil. According to the selected plant defense markers, plants living in sandy soil appeared more impacted to BCA inoculation. Ta SC1 plants treated in sandy soil demonstrated a strong suppression defense genes 24hpi, that conversed in strong simulated defenses 4dpi, with a significant overexpression of PAL and STS. On the other hand, in clay soil, BCA-treated plants showed a slight increase in the expression of plant defense genes 24hpi, that intensifies 4dpi. In conclusion, the effect of Bs PTA-271 and Ta SC1 in grapevine rhizosphere appears to be soil-dependent, where a sandy soil favors the fungal BCA (Ta SC1) establishment, while a clay soil favors the bacterial BCA (Bs PTA-271) establishment.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Catarina Leal1, Rebeca Bujanda1, Josep Armengol2, Patricia Trotel-Aziz3, Florence Fontaine3, Ales Eichmeier4, David Gramaje1

1Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas – Universidad de la Rioja – Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain
2Instituto Agroflorestal Mediterráneo, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
3University of Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes Research Unit, EA 4707, INRAE USC 1488, SFR Condorcet FR CNRS 3417, Reims, France
4Mendeleum—Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44 Lednice, Czech Republic

Contact the author*

Keywords

Bacillus spp., biocontrol, ddPCR, grapevine, microbiome, next generation sequencing, rhizosphere, Trichoderma spp.

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Long-lasting flavour perception of wines treated with oenological additives considering the individual PROP taste-phenotype

The use of oenological additives is becoming a common practice due to the technological and sensory properties they provide to the wines. However, the number of studies focused on the impact that these additives might induce on wine flavor perception during wine tasting is still quite scarce. The aim of this work was to evaluate the effect of three different types of common oenological additives: two oenotannins (ellagitannin and gallotannin) and a commercial preparation of yeast mannoproteins on the long-lasting flavor perception (aroma and astringency).

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.

Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

A large population of vines of the Mandón minority red variety (synonymous with Garró) has been located in old vineyards of the D.O. Arribes (Zamora and Salamanca) to conserve and recover this minority variety. The wines made with this variety are characterized by their good structure and color, interesting harmony, an excellently low pH, with high acidity, as well as complex aromas of blue fruits and a marked and expressive minerality.

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

The wine industry is increasing the demand for indigenous yeasts adapted to the terroir to produce unique wines that reflect the distinctive characteristics of each region. In our group, we have identified and characterized 60 native yeast strains isolated from a vineyard in Maldonado-Uruguay, in which three strains stood out: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. Their oenological potential was evaluated at a semi-pilot scale in Tannat must vinification in the wine cellar to have a more precise and representative evaluation of the final product.