terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Abstract

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses. Therefore, we tested the effect of Ta SC1and Bs PTA-271, on grapevine rhizosphere bacterial and fungal microbiome, and plant gene expression, in two different soil types (clay and sandy soil). Additionally, we specifically quantified Ta SC1 and Bs PTA-271 in rhizosphere of both soil types. To do that, we used novel molecular approaches, such as high-throughput amplicon sequencing (HTAS), droplet digital PCR (ddPCR) and real-time PCR (qPCR). The results suggest that Bs PTA-271 established better in clay soil, where although its quantity was low at 30dpi, it was maintained at 90dpi. In contrast, Ta SC1 established better in sandy soil, with a lower quantity, that increased overtime. Regarding the BCAs impact on rhizosphere microbiome, bacterial diversity was not affected by any BCA application. However, inoculations with Ta SC1 significantly reduced fungal diversity. Ta SC1 applications affected the relationships between microorganisms, however this effect was clearer in clay soil. According to the selected plant defense markers, plants living in sandy soil appeared more impacted to BCA inoculation. Ta SC1 plants treated in sandy soil demonstrated a strong suppression defense genes 24hpi, that conversed in strong simulated defenses 4dpi, with a significant overexpression of PAL and STS. On the other hand, in clay soil, BCA-treated plants showed a slight increase in the expression of plant defense genes 24hpi, that intensifies 4dpi. In conclusion, the effect of Bs PTA-271 and Ta SC1 in grapevine rhizosphere appears to be soil-dependent, where a sandy soil favors the fungal BCA (Ta SC1) establishment, while a clay soil favors the bacterial BCA (Bs PTA-271) establishment.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Catarina Leal1, Rebeca Bujanda1, Josep Armengol2, Patricia Trotel-Aziz3, Florence Fontaine3, Ales Eichmeier4, David Gramaje1

1Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas – Universidad de la Rioja – Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain
2Instituto Agroflorestal Mediterráneo, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
3University of Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes Research Unit, EA 4707, INRAE USC 1488, SFR Condorcet FR CNRS 3417, Reims, France
4Mendeleum—Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44 Lednice, Czech Republic

Contact the author*

Keywords

Bacillus spp., biocontrol, ddPCR, grapevine, microbiome, next generation sequencing, rhizosphere, Trichoderma spp.

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

The vineyard has experienced a general increase in yields mainly due to the elevated use of technology which caused a quality loss of grapes in more than one case. A large percentage of the Spanish vineyard is covered by a Denomination of Origin which limits the productive level of the vineyards as one of its regulations. The maximum production limit is a variable characteristic of each vineyard and is not usually regulated by agronomic criteria, and this explains the fact that each vineyard can reach high quality with a totally different yield from that set by the Denomination of Origin.

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

A sensometabolomic approach to understand wine mouthfeel percepts

Targeted analytical methods can overlook compounds that are a priori unknown to play a role in the mouthfeel sensations. This limitation can be overcome with the information provided by untargeted metabolomic analysis using UPLC‐QTOF-MS. To this end, an untargeted metabolomic approach applied to 42 red wines has allowed development of a model with predictive capacity by cross-validation for the “dry”, “oily” and “unctuous” sensations perceived by a sensory panel. The optimal PLS model for “dry” retained compounds with positive regression coefficients (≥ 0.17) including a trimer procyanidin, a peptide, and four anthocyanins.