terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Abstract

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens. It was found that vines treated with ozone showed a reduction in infection of up to 50% relative to untreated control plants and infection levels similar to conventional spraying treatment. This resistance was maintained for 9-11 days after ozone treatment. furthermore, the leaves metabolites were extracted and analyzed in LCMSMS. It was found that vines exposed to ozone have increased levels of flavonoids and other compounds with protective activity on the plant. Also, it was found that photosynthesis levels and the crop yield weren’t affected by ozone exposure.

We found a direct relationship between ozone treatment in vines and the induction of resistance in plants by activating metabolic defense mechanisms. In addition, spraying treatment with ozonated water in the mentioned concentrations does not harm the physiology of the plant and the crop.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Meir Shlisel1*, Amber Hill1, Neta Shoshani1, Tirtza Zhavi3, and Mery Dafni-Yelin2

1 Tel Hai Academic College, Israel
2 Northern Agriculture Research & Development, MIGAL – Galilee Research Institute, Israel
3 Extension Service, Kiryat Shemona 10200, Israel

Contact the author*

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Acceptability of canned wines: effect of the level of involvement of consumers and type of wine

In recent years there has been a growing demand for alternative packaging designs in the food industry focused on diminishing the carbon footprint. Despite the environmental advantages of cans versus bottles, the traditional environment of wine has hindered the establishment of less contaminant containers. In this context, the objective of this study was to understand and generate knowledge about consumers´ perception of canned wines in comparison to bottled wines.

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Evaluation of Furmint clones in the Tokaj Wine Region

The ’Furmint’ is the most important grape variety in the Tokaj Wine Region, constituting around 65% of its vineyard area. Before the phylloxera disease many types were grown, but as selection started in the 20th century, its diversity dramatically narrowed. As a result, the cultivation of Furmint was based mainly on two heavy-cropping clones, T.85 and T.92 at the end of the ’80s. Aims of present clone research take into account that after solely quantity as target, quality emerged in the 1990’s and most recently, typicity appeared as more private estates began their own selection program.