terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Abstract

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance. The aims of this study were to select the best EPN-adjuvant mix for their use against L. botrana and determine whether this application can imply any change in the grape quality. Overall, the adjuvant Maximix resulted in the best candidate for the combination with S. feltiae and S. carpocapsae. Compared with the no-application treatment, Maximix combined with EPN increased their killing against L. botrana L3 larvae on grapes and leaves with a significant reduction of the damage. In the trunk bark system at 22 ºC, 14 ºC, and 10 ºC, pupae mortality caused by EPN decreased with temperature, from ~60 % at 22 ºC to values ~20 % at 10ºC, and the use of Maximix in this scenario did not improve their efficacy. The volatile composition of the grapes did not show significant differences among treatments however, a trend to increase different families of volatiles (terpenes and C13-norisoprenoids) was observed when S. feltiae was combined with the adjuvant Maximix. Further validation in field conditions is necessary for their full implementation.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Raquel Campos-Herrera1, Mar Vilanova1, María del Mar González-Trujillo1, Ignacio Vicente-Díez1, Elizabeth Carpentero1, Miguel Puelles1, Bianca S. Costa1, Elisabet Vaquero1, Javier Manzanares1

1Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Gobierno de La Rioja, Ctra. Burgos km 6, La Grajera, 26007 Logroño, Spain

Contact the author*

Keywords

adjuvants, European Grapevine Moth, vineyard, overwintering, Steinernema

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Overall conceptual characterization of aged dry white wines using a mental descriptive questionnaire

The purpose of the present study was to understand the overall concept of an aged dry white wine using a descriptive mental questionnaire. A total of 680 worldwide participants, grouped according to their involvement in the wine business, replied to an online questionnaire to characterize the sensory analytical and synthetic descriptors of an aged dry white wine. The descriptors were selected using a Check-All-That-Apply (CATA) approach concerning wine colour, aroma, taste, mouthfeel, and global appreciation.

Towards the understanding of wine distillation in the production of brandy de Jerez. Chemical and sensory characterization of two distillation methods: continuous and batch distillation

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (1) and varies each year of harvest depending on the weather conditions (2).

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system.

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.