terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

Abstract

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago. The genetic analysis was performed with 27 SSR genetic markers. The primary analysis allowed us to identify varieties previously registered as modern, traditional of colonial origin, others post phylloxera and finally the group of Criollas vines derived from crosses between those of colonial origin. Secondary analysis allowed us to identify the genealogy and genetic diversity of the ancient material. In the Criollas family, up to 20 new F1 genotypes, derived from the old vines of colonial origin, have been identified, some of them are widely propagated throughout the region and the country, finally a second generation Criolla was also identified. The very low rate of self-pollination events, the clonal propagation of the created material and the existence of several dozens of Criollas genotypes suggest the early appearance of breeding activities with South American identity during the colonial past and not necessarily from natural origin.

Financed by FIC-R GORE MAULE Code BIP 40.018.935-0 and FIA PYT 0036 2020

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Nilo Mejía1*, Irina Díaz2, Ángela González2 y Nallatt Ocarez1

1Instituto de Investigaciones Agropecuarias, INIA Centro Regional La Platina. Avenida Santa Rosa 11610, La Pintana, Santiago, Chile
2 Instituto de Investigaciones Agropecuarias, INIA Centro Regional de Investigación Raihuén. Avenida Esperanza s/n Estación Villa Alegre, Linares, Chile

Contact the author*

Keywords

criollas, fingerprinting, grapevine genetics, ancient vitiviniculture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area

The quality and color stability of red wines are directly related to content and distribution of phenolic compounds. However, the climate change produces the asynchrony between the dates of technological and maturity of grapes. The crop-forcing technique (CF) restores the coupling between phenolic and technological ripeness while limits vineyard yields. Blending of wines is frequently used to equilibriate composition of wines and to increase their stability, color and quality. The aim of the present work is to study the phenolic composition and color of wine blends made with FW (wines from vines subjected to CF) and CW (wines for vines under the usual cultivation practices).

Phenolic composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Grape and wine phenolic compounds have been shown to be highly related to both wine quality (color, flavor, and taste) and health-promoting properties (antioxidant and cardioprotective, among others). The aim of this work was to evaluate and compare the phenolic contents of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain vintage 2022. In addition, the phenolic profiles of the Portuguese wines from three vintages (2020, 2021, 2022) was compared.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Improving our knowledge on biotic and abiotic factors that influence the composition of the grapevine mycobiome is of great agricultural significance, due to potential effects on plant health, productivity, and wine characteristics. Among the various environmental factors affecting the morphological, physiological, biochemical and molecular attributes of grapevine, drought stress is one of the most severe, becoming increasingly an issue worldwide.

Water availability at budbreak time in vineyards that are deficitary irrigated during the summer: Effect on must volatile composition


In recent years, Mediterranean regions are being affected by marked climate changes, primarily characterized by reduced precipitation, greater concurrence of temperature extremes and drought during the growing season, and increased inter-annual variability in temperatures and rainfall. Generally, high-quality red wines need moderate water deficit. Hence, irrigation may be needed to avoid severe vine water stress occurring in some vintages and soils with low holding capacity. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETO) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on must volatile composition at harvest.