terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

Abstract

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago. The genetic analysis was performed with 27 SSR genetic markers. The primary analysis allowed us to identify varieties previously registered as modern, traditional of colonial origin, others post phylloxera and finally the group of Criollas vines derived from crosses between those of colonial origin. Secondary analysis allowed us to identify the genealogy and genetic diversity of the ancient material. In the Criollas family, up to 20 new F1 genotypes, derived from the old vines of colonial origin, have been identified, some of them are widely propagated throughout the region and the country, finally a second generation Criolla was also identified. The very low rate of self-pollination events, the clonal propagation of the created material and the existence of several dozens of Criollas genotypes suggest the early appearance of breeding activities with South American identity during the colonial past and not necessarily from natural origin.

Financed by FIC-R GORE MAULE Code BIP 40.018.935-0 and FIA PYT 0036 2020

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Nilo Mejía1*, Irina Díaz2, Ángela González2 y Nallatt Ocarez1

1Instituto de Investigaciones Agropecuarias, INIA Centro Regional La Platina. Avenida Santa Rosa 11610, La Pintana, Santiago, Chile
2 Instituto de Investigaciones Agropecuarias, INIA Centro Regional de Investigación Raihuén. Avenida Esperanza s/n Estación Villa Alegre, Linares, Chile

Contact the author*

Keywords

criollas, fingerprinting, grapevine genetics, ancient vitiviniculture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.

Late pruning, an alternative for rainfed vine varieties facing new climatic conditions

In Chile there is a dry farming area known as a traditional wine region, where varieties brought by the Spanish conquerors still persist. These varieties, in general, are cultivated under traditional systems, with low use of technical and economic resources, and low profitability for their grapes and wines. In this region, as in other wine grape growing areas, climatic conditions have changed significantly in recent decades. In particular, the occurrence of spring frosts, when bud break has already begun, have generated significant losses for these growers.

Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Grapevine cultivars are vegetatively propagated to preserve their varietal characteristics. However, spontaneous somatic variations that occur and are maintained during cycles of vegetative growth offer opportunities for the natural improvement of traditional grape cultivars. One advantageous trait for winegrowing is reduced bunch compactness, which decreases the susceptibility to pests and fungal diseases and favor an even berry ripening.

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.