terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

Abstract

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago. The genetic analysis was performed with 27 SSR genetic markers. The primary analysis allowed us to identify varieties previously registered as modern, traditional of colonial origin, others post phylloxera and finally the group of Criollas vines derived from crosses between those of colonial origin. Secondary analysis allowed us to identify the genealogy and genetic diversity of the ancient material. In the Criollas family, up to 20 new F1 genotypes, derived from the old vines of colonial origin, have been identified, some of them are widely propagated throughout the region and the country, finally a second generation Criolla was also identified. The very low rate of self-pollination events, the clonal propagation of the created material and the existence of several dozens of Criollas genotypes suggest the early appearance of breeding activities with South American identity during the colonial past and not necessarily from natural origin.

Financed by FIC-R GORE MAULE Code BIP 40.018.935-0 and FIA PYT 0036 2020

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Nilo Mejía1*, Irina Díaz2, Ángela González2 y Nallatt Ocarez1

1Instituto de Investigaciones Agropecuarias, INIA Centro Regional La Platina. Avenida Santa Rosa 11610, La Pintana, Santiago, Chile
2 Instituto de Investigaciones Agropecuarias, INIA Centro Regional de Investigación Raihuén. Avenida Esperanza s/n Estación Villa Alegre, Linares, Chile

Contact the author*

Keywords

criollas, fingerprinting, grapevine genetics, ancient vitiviniculture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Preliminary study of the influence of ripening on the polysaccharide content of different red grape varieties

Grape skin has a barrier and protective function in grapes. Cell wall of grape skins is mainly composed of polysaccharides such as pectins, celulloses and hemicelluloses and structural proteins. Terroir, variety and changes during ripening can affect the content of polysaccharides in grapes. The aim of this study was to evaluate the content of polysaccharides (PS) in grapes along the ripening process. Three red grape varieties were studied: Garnacha (G), Tempranillo (T) and Prieto Picudo (PP).

Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Crops are facing increasing biotic and abiotic stress pressures due to global changes. However, trade-off mechanisms between these stresses and the underlying physiological processes are still poorly understood, especially in perennial crop species. To better understand these trade-offs, we studied the effect of drought on grapevine (Vitis vinifera) physiology and esca-related wood fungal communities. Esca is a vascular disease caused by a community of wood-infecting pathogenic fungi, and characterized by trunk necrosis, leaf scorch symptoms, yield losses, and mortality.

Vineyard management practices to reduce sugar content on ‘Monastrell’ grapes

Climate change is resulting in more dry and hot summers, accelerating grape ripening and increasing berry sugars concentration. This results in wines with a higher alcohol content, which has a negative impact on wine quality, as well as, on consumer health. Agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be defined. In this work, different management practices have been assessed on rainfed ‘Monastrell’ grapevines in Jumilla (Murcia, Spain) from 2021 to 2023 vintages. Mulching, shading, application of kaolin and different types of pruning were evaluated, among others field adaptation practices.

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Light is responsible for adverse reactions in wine including the formation of unpleasant flavors, loss of vitamins or photodegradation of anthocyanins. Among them, the riboflavin degradation leads to the formation of undesirable volatile compounds, known as light-struck taste. These photo-chemical reactions could be avoided by simply using opaque packaging. However, most rosé wines are kept in transparent bottles due to different commercial reasons. Some agri-food waste extracts have been studied for their photoprotective action which turn to be highly correlated with phenolic content [1].