terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

Abstract

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago. The genetic analysis was performed with 27 SSR genetic markers. The primary analysis allowed us to identify varieties previously registered as modern, traditional of colonial origin, others post phylloxera and finally the group of Criollas vines derived from crosses between those of colonial origin. Secondary analysis allowed us to identify the genealogy and genetic diversity of the ancient material. In the Criollas family, up to 20 new F1 genotypes, derived from the old vines of colonial origin, have been identified, some of them are widely propagated throughout the region and the country, finally a second generation Criolla was also identified. The very low rate of self-pollination events, the clonal propagation of the created material and the existence of several dozens of Criollas genotypes suggest the early appearance of breeding activities with South American identity during the colonial past and not necessarily from natural origin.

Financed by FIC-R GORE MAULE Code BIP 40.018.935-0 and FIA PYT 0036 2020

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Nilo Mejía1*, Irina Díaz2, Ángela González2 y Nallatt Ocarez1

1Instituto de Investigaciones Agropecuarias, INIA Centro Regional La Platina. Avenida Santa Rosa 11610, La Pintana, Santiago, Chile
2 Instituto de Investigaciones Agropecuarias, INIA Centro Regional de Investigación Raihuén. Avenida Esperanza s/n Estación Villa Alegre, Linares, Chile

Contact the author*

Keywords

criollas, fingerprinting, grapevine genetics, ancient vitiviniculture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Aromatic characterization of Moscato Giallo by GC-MS/MS and stable isotopic ratio analysis of the major volatile compounds

Among the Moscato grapes, Moscato Giallo is a winegrape variety characterized by a high content of free and glycosylated monoterpenoids, which gives very aromatic wines. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, HO-trienol, HO-diols, 8-Hydroxylinalool, geranic acid and β-myrcene, that give citrus, rose, and peach notes.

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].

The weak role of organic mulches in shaping bacterial communities in grapevine

The interest in sustainable and ecologic agricultural practices in grapevine has grown significantly in recent years in the context of ecological transition. Organic mulches are treatments that support the circular economy and positively affect the soil and the plant. They are an alternative to herbicides and other conventional practices since they may influence soil moisture, erosion, structure and weed control. However, their effects on the soil and must microbiota remain unknown.

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.