terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

Abstract

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago. The genetic analysis was performed with 27 SSR genetic markers. The primary analysis allowed us to identify varieties previously registered as modern, traditional of colonial origin, others post phylloxera and finally the group of Criollas vines derived from crosses between those of colonial origin. Secondary analysis allowed us to identify the genealogy and genetic diversity of the ancient material. In the Criollas family, up to 20 new F1 genotypes, derived from the old vines of colonial origin, have been identified, some of them are widely propagated throughout the region and the country, finally a second generation Criolla was also identified. The very low rate of self-pollination events, the clonal propagation of the created material and the existence of several dozens of Criollas genotypes suggest the early appearance of breeding activities with South American identity during the colonial past and not necessarily from natural origin.

Financed by FIC-R GORE MAULE Code BIP 40.018.935-0 and FIA PYT 0036 2020

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Nilo Mejía1*, Irina Díaz2, Ángela González2 y Nallatt Ocarez1

1Instituto de Investigaciones Agropecuarias, INIA Centro Regional La Platina. Avenida Santa Rosa 11610, La Pintana, Santiago, Chile
2 Instituto de Investigaciones Agropecuarias, INIA Centro Regional de Investigación Raihuén. Avenida Esperanza s/n Estación Villa Alegre, Linares, Chile

Contact the author*

Keywords

criollas, fingerprinting, grapevine genetics, ancient vitiviniculture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.