OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 What is the fate of oxygen consumed by red wine? Main processes and reaction products

What is the fate of oxygen consumed by red wine? Main processes and reaction products

Abstract

Oxygen consumed by wine is used to oxidize sulfur dioxide and ethanol to form acetaldehyde wine oxygen consumption rate (OCR) was negatively correlated with the initial acetaldehyde level. Experiences carried out at 25 ºC with red wines have demonstrated that after consuming a large amount of O2, some young wines did not form acetaldehyde. However, acetaldehyde level increased in aged wines. Higher acetaldehyde accumulation in aged wines can be explained by Aldehyde Reactive Polyphenols (ARPs) smaller amounts, because of their lower reactive potential due to high O2 exposure. Models characterized ARPs as anthocyanins, flavonols, tannins and flavanol-anthocyanins adducts. These ARPs should be closely related to wine aging potential by measuring acetaldehyde consumption rate (ACRs) and/or the maxima amounts of acetaldehyde each wine can consume. 

The main goal of this work was to find a new polyphenol index which should be linked to wine oxygen consumption kinetics. It could indicate the maximum oxygen level that a wine can consume. As well as, elucidate if acetaldehyde is the reactive species with ARPs, but one of its radical precursors in the Fenton reaction. 

Three experiments were prepared in anoxia followed by total acetaldehyde determination by using HPLC: 1) wines spiked with 30 and 300 mg/L of acetaldehyde and incubated at 25, 45 and 70 °C; 2)synthetic wines spiked with 15 to 120 mg/L of acetaldehyde and polyphenol extracts; 3) synthetic matrices filled with malvidin-3-O-glucoside, catechin and a mix of both, which were exposed to: a) 8 mg/L O2 to form acetaldehyde in situ or b) to anoxia and spiked acetaldehyde (11 mg/L). 

Several wines consume acetaldehyde at different rates, which are particularly imprecise at low temperatures. This makes impractical the use of ACRs as an index to categorize wine polyphenolic composition by defining a discrete ARP category. ACRs are too complex, showing a high dependence order towards acetaldehyde level and an equilibrium concentration. Such concentrations were found to depend on the previous acetaldehyde uptake by the polyphenolic fraction, but it was too imprecise to take clear conclusions. In any case, measured ACRs are smaller than expected attending to oxygen consumption kinetics and acetaldehyde accumulation rates. No significant differences were found when comparing the acetaldehyde formed in situ or when acetaldehyde was spiked. 

Results show that oxygen consumed by wine is used to oxidize SO2, ethanol and at least 50 % to oxidize ascorbic acid, cysteine, glutathione, H2S, thiols, methionine and phenols. 

This work has been funded by the Spanish Ministry of Economy and Competitiveness (Spanish FPI Program AGL2014-59840-C2-1-R, AGL2017-59840), by Diputación General de Aragón (T53) and Fondo Social Europeo.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Almudena Marrufo-Curtido, Elena Bueno-Aventín, Vicente Ferreira, Ana Escudero

Laboratory for Aroma analysis and Enology (LAAE). Instituto Agroalimentario de Aragón (ia2). Department of Analytical Chemistry. Associated unit to Instituto de Ciencias de la Vid y del Vino (ICVV-CSIC, UR, CAR) Universidad de Zaragoza.

Contact the author

Keywords

Oxygen, Acetaldehyde, Polyphenol index, Anthocyanins, flavonols, tannins and flavanol-anthocyanins adducts 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Innovative water status monitoring of white grape varieties with on-plant sensors

Context and Purpose. Climate change presents significant challenges to agricultural sustainability, particularly through the increasing frequency of drought and water scarcity.

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

Development of a semi-controlled setup for manipulating drought and heat stress in open field trials

Drought and heat stress will pose challenges for the future of viticulture and wine quality, as grapevine biological processes are pushed beyond their optimum conditions. Efforts are increasing to study and predict the effects of drought spells and heatwaves on grapevine physiology and resulting harvest quality. This calls for the development of adequate systems to induce and manipulate the required stress, especially in open field trials where conditions are more difficult to control. We present a semi-controlled system for studying drought and heat stress in grapevine in the field.

Brettanomyces bruxellensis and off-odours: genetic and proteomic approaches to unravel the molecular mechanism of ethyl-phenols production

Brettanomyces/Dekkera yeasts in wine are able to produce various spoilage compounds that are, at high concentration, detrimental to wine quality. The principal spoiler compounds associated with Brettanomyces spp. are vinyl and ethyl-phenols that are responsible for off- odours described as “animal”, “medicinal”, “sweaty leather”, “barnyard”, “spicy” and “clove-like”.

Volatile fraction of young Cabernet Sauvignon from Santa Catarina State, a new terroir in Brazil

A total of 52 volatile compounds were measured in varietal Cabernet Sauvignon wines from four sites in Santa Catarina State (Brazil), over two consecutive vintages (2004 and 2005).