OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 What is the fate of oxygen consumed by red wine? Main processes and reaction products

What is the fate of oxygen consumed by red wine? Main processes and reaction products

Abstract

Oxygen consumed by wine is used to oxidize sulfur dioxide and ethanol to form acetaldehyde wine oxygen consumption rate (OCR) was negatively correlated with the initial acetaldehyde level. Experiences carried out at 25 ºC with red wines have demonstrated that after consuming a large amount of O2, some young wines did not form acetaldehyde. However, acetaldehyde level increased in aged wines. Higher acetaldehyde accumulation in aged wines can be explained by Aldehyde Reactive Polyphenols (ARPs) smaller amounts, because of their lower reactive potential due to high O2 exposure. Models characterized ARPs as anthocyanins, flavonols, tannins and flavanol-anthocyanins adducts. These ARPs should be closely related to wine aging potential by measuring acetaldehyde consumption rate (ACRs) and/or the maxima amounts of acetaldehyde each wine can consume. 

The main goal of this work was to find a new polyphenol index which should be linked to wine oxygen consumption kinetics. It could indicate the maximum oxygen level that a wine can consume. As well as, elucidate if acetaldehyde is the reactive species with ARPs, but one of its radical precursors in the Fenton reaction. 

Three experiments were prepared in anoxia followed by total acetaldehyde determination by using HPLC: 1) wines spiked with 30 and 300 mg/L of acetaldehyde and incubated at 25, 45 and 70 °C; 2)synthetic wines spiked with 15 to 120 mg/L of acetaldehyde and polyphenol extracts; 3) synthetic matrices filled with malvidin-3-O-glucoside, catechin and a mix of both, which were exposed to: a) 8 mg/L O2 to form acetaldehyde in situ or b) to anoxia and spiked acetaldehyde (11 mg/L). 

Several wines consume acetaldehyde at different rates, which are particularly imprecise at low temperatures. This makes impractical the use of ACRs as an index to categorize wine polyphenolic composition by defining a discrete ARP category. ACRs are too complex, showing a high dependence order towards acetaldehyde level and an equilibrium concentration. Such concentrations were found to depend on the previous acetaldehyde uptake by the polyphenolic fraction, but it was too imprecise to take clear conclusions. In any case, measured ACRs are smaller than expected attending to oxygen consumption kinetics and acetaldehyde accumulation rates. No significant differences were found when comparing the acetaldehyde formed in situ or when acetaldehyde was spiked. 

Results show that oxygen consumed by wine is used to oxidize SO2, ethanol and at least 50 % to oxidize ascorbic acid, cysteine, glutathione, H2S, thiols, methionine and phenols. 

This work has been funded by the Spanish Ministry of Economy and Competitiveness (Spanish FPI Program AGL2014-59840-C2-1-R, AGL2017-59840), by Diputación General de Aragón (T53) and Fondo Social Europeo.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Almudena Marrufo-Curtido, Elena Bueno-Aventín, Vicente Ferreira, Ana Escudero

Laboratory for Aroma analysis and Enology (LAAE). Instituto Agroalimentario de Aragón (ia2). Department of Analytical Chemistry. Associated unit to Instituto de Ciencias de la Vid y del Vino (ICVV-CSIC, UR, CAR) Universidad de Zaragoza.

Contact the author

Keywords

Oxygen, Acetaldehyde, Polyphenol index, Anthocyanins, flavonols, tannins and flavanol-anthocyanins adducts 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

“Un grande theatro di amenissimi colli”: “tutti coltivati et abondanti di frutti eccellentissimi e di buonissime viti”

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Chemical characterization of distinctive aroma profiles of Valpolicella and Amarone wines

Valpolicella is an Italian wine producing region, famous for the production of high-quality red wines. A distinctive characteristic of this region is the extensive use of post-harvest withering.

Relative impact of crop size and leaf removal on aromatic compounds and phenolic acids of Istrian Malvasia wine

Although several studies investigated the impact of crop size or fruit zone microclimate on aromatic or phenolic composition of wines, the effects of these two practices were not assessed and compared in the same study through a technological experiment within the same vineyard. Therefore, their relative effectiveness is hard to compare, which in turn is essential for providing producers with valuable information as a basis to choose adequate approach in yield and canopy management. The aim of the study was to investigate the effects of two crop sizes and two different fruit zone microclimate conditions obtained by leaf removal in a two-factorial experiment, in order to assess and compare their relative impact on Istrian Malvasia (Vitis vinifera L.) white wine aroma and phenolic composition.

Frost risk projections in a changing climate are highly sensitive in time and space to frost modelling approaches

Late spring frost is a major challenge for various winegrowing regions across the world, its occurrence often leading to important yield losses and/or plant failure. Despite a significant increase in minimum temperatures worldwide, the spatial and temporal evolution of spring frost risk under a warmer climate remains largely uncertain. Recent projections of spring frost risk for viticulture in Europe throughout the 21st century show that its evolution strongly depends on the model approach used to simulate budburst. Furthermore, the frost damage modelling methods used in these projections are usually not assessed through comparison to field observations and/or frost damage reports.
The present study aims at comparing frost risk projections simulated using six spring frost models based on two approaches: a) models considering a fixed damage threshold after the predicted budburst date (e.g BRIN, Smoothed-Utah, Growing Degree Days, Fenovitis) and b) models considering a dynamic frost sensitivity threshold based on the predicted grapevine winter/spring dehardening process (e.g. Ferguson model). The capability of each model to simulate an actual frost event for the Vitis vinifera cv. Chadonnay B was previously assessed by comparing simulated cold thermal stress to reports of events with frost damage in Chablis, the northernmost winegrowing region of Burgundy. Models exhibited scores of κ > 0.65 when reproducing the frost/non-frost damage years and an accuracy ranging from 0.82 to 0.90.
Spring frost risk projections throughout the 21st century were performed for all winegrowing subregions of Bourgogne-Franche-Comté under two CMIP5 concentration pathways (4.5 and 8.5) using statistically downscaled 8×8 km daily air temperature and humidity of 13 climate models. Contrasting results with region-specific spring frost risk trends were observed. Three out of five models show a decrease in the frequency of frost years across the whole study area while the other two show an increase that is more or less pronounced depending on winegrowing subregion. Our findings indicate that the lack of accuracy in grapevine budburst and dehardening models makes climate projections of spring frost risk highly uncertain for grapevine cultivation regions.

Influence du terroir et de la conduite du verger sur la composition des pommes à cidre

L’économie cidricole française est concentrée dans les régions du grand Ouest avec environ 40% de la production nationale de pommes à cidre pour la seule région Bas-Normande où le Pays d’Auge occupe