OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 What is the fate of oxygen consumed by red wine? Main processes and reaction products

What is the fate of oxygen consumed by red wine? Main processes and reaction products

Abstract

Oxygen consumed by wine is used to oxidize sulfur dioxide and ethanol to form acetaldehyde wine oxygen consumption rate (OCR) was negatively correlated with the initial acetaldehyde level. Experiences carried out at 25 ºC with red wines have demonstrated that after consuming a large amount of O2, some young wines did not form acetaldehyde. However, acetaldehyde level increased in aged wines. Higher acetaldehyde accumulation in aged wines can be explained by Aldehyde Reactive Polyphenols (ARPs) smaller amounts, because of their lower reactive potential due to high O2 exposure. Models characterized ARPs as anthocyanins, flavonols, tannins and flavanol-anthocyanins adducts. These ARPs should be closely related to wine aging potential by measuring acetaldehyde consumption rate (ACRs) and/or the maxima amounts of acetaldehyde each wine can consume. 

The main goal of this work was to find a new polyphenol index which should be linked to wine oxygen consumption kinetics. It could indicate the maximum oxygen level that a wine can consume. As well as, elucidate if acetaldehyde is the reactive species with ARPs, but one of its radical precursors in the Fenton reaction. 

Three experiments were prepared in anoxia followed by total acetaldehyde determination by using HPLC: 1) wines spiked with 30 and 300 mg/L of acetaldehyde and incubated at 25, 45 and 70 °C; 2)synthetic wines spiked with 15 to 120 mg/L of acetaldehyde and polyphenol extracts; 3) synthetic matrices filled with malvidin-3-O-glucoside, catechin and a mix of both, which were exposed to: a) 8 mg/L O2 to form acetaldehyde in situ or b) to anoxia and spiked acetaldehyde (11 mg/L). 

Several wines consume acetaldehyde at different rates, which are particularly imprecise at low temperatures. This makes impractical the use of ACRs as an index to categorize wine polyphenolic composition by defining a discrete ARP category. ACRs are too complex, showing a high dependence order towards acetaldehyde level and an equilibrium concentration. Such concentrations were found to depend on the previous acetaldehyde uptake by the polyphenolic fraction, but it was too imprecise to take clear conclusions. In any case, measured ACRs are smaller than expected attending to oxygen consumption kinetics and acetaldehyde accumulation rates. No significant differences were found when comparing the acetaldehyde formed in situ or when acetaldehyde was spiked. 

Results show that oxygen consumed by wine is used to oxidize SO2, ethanol and at least 50 % to oxidize ascorbic acid, cysteine, glutathione, H2S, thiols, methionine and phenols. 

This work has been funded by the Spanish Ministry of Economy and Competitiveness (Spanish FPI Program AGL2014-59840-C2-1-R, AGL2017-59840), by Diputación General de Aragón (T53) and Fondo Social Europeo.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Almudena Marrufo-Curtido, Elena Bueno-Aventín, Vicente Ferreira, Ana Escudero

Laboratory for Aroma analysis and Enology (LAAE). Instituto Agroalimentario de Aragón (ia2). Department of Analytical Chemistry. Associated unit to Instituto de Ciencias de la Vid y del Vino (ICVV-CSIC, UR, CAR) Universidad de Zaragoza.

Contact the author

Keywords

Oxygen, Acetaldehyde, Polyphenol index, Anthocyanins, flavonols, tannins and flavanol-anthocyanins adducts 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Deficit irrigation and mechanical canopy management affect berry and wine phenolic and aroma composition of Syrah in Central California

Labor shortage is one of the most crucial issues in current viticulture. Mechanized approaches are helpful in reducing production costs and increasing vineyard efficiency but their effect on grapes and wines needs evaluation. This work assess the results of combined mechanical pruning and shoot thinning with deficit irrigation strategies to reduce management costs but not quality of production.

Light-struck taste in white wine: enological approach for its prevention

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage.

Uncovering the influence of vineyard management on fungal community structure and functional diversity within above-ground compartments

In viticulture, microbial communities – particularly fungi – play a vital role in plant health, disease management, and grape quality.

Application of the simplified quality bioclimatical index of Fregoni: suggestion of using its evolution curve

Les indices bioclimatiques constituent un bon outil pour piloter le développement vitivinicole dans une région précise

Il piano regolatore delle città’ del vino: aspetti urbanistici, economici e turistici

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...