terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 “Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

“Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

Abstract

The mechanization of pruning and harvesting in vineyards has increased the risk of soil compaction. To reclaim soil properties or avoid this degradation process, it is crucial to properly manage the soil organic matter, and the application of compost derived from the vines themselves is a strategy to achieve this. The objective of this study was to evaluate the properties of soil treated with different doses of compost applied both on the vine row and the inter rows of a Vitis vinifera crop.

The experiment was established in May 2020, in three fields with clay contents ranging between 17-36%, with 7 treatments corresponding to compost application rates (0, 4, 10, 20 tons ha-1) and position (inter and intra row). Measurements of soil physical and chemical properties were taken, as well as variables related to the plants.

It was observed that the inter rows had a more deteriorated structural condition compared to the vine rows, especially at surface. However, the increase in compost doses led to a significant decrease in penetration resistance and a notable increase in coarse porosity, especially in soil with more than 20% clay. No evident changes were found in bulk density and soil aggregate stability. An increase in macronutrients (N, P, K) was detected because of compost application, although the effects varied according to soil type.

The treatments did not affect the physiological and productive variables of the plants, although an increase in some foliar nutrients and an improvement in the Ravaz index were observed with compost applications, indicating a more balanced proportion between grape production, and pruning mass. In conclusion, compost application has positive effects on soil properties, especially in the area between rows, by providing nutrients that promote the vegetative and productive balance of the vines, thereby contributing to sustainable production.

Acknowledgements: CORFO Project PI-3486

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Roa-Roco, Rosa1; Seguel, Oscar2; Raphahla, Sidney2; Fernández, Cristian2; Herrera, Carlos2; Tramon, Sebastián3; González, Alvaro1

1Centro de Investigación e Innovación, Viña Concha y Toro
2Universidad de Chile, Facultad de Ciencias Agronómicas
3Viñedos Emiliana

Contact the author*

Keywords

soil organic amendments, Vitis vinifera L., soil compaction

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.

Agronomic behavior of three grape varieties in different planting density and irrigation treatments

In the O Ribeiro Denomination of Origin, there is a winemaking tradition of growing vines under a high-density plantation framework (8,920 vines/ha) and maintaining its vegetative cycle under rainfed conditions.
Currently, viticulture is advancing to plantation frames in which the density is considered medium (5,555 vines/ha), thus allowing mechanized work to be carried out for vineyard management operations. Although, the application of irrigation applied proportionally to the needs of the vegetative cycle of the vine, is a factor that increasingly helps a good development of the vine compared to the summer period, with increasingly uncertain weather forecasts.

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.