terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 “Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

“Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

Abstract

The mechanization of pruning and harvesting in vineyards has increased the risk of soil compaction. To reclaim soil properties or avoid this degradation process, it is crucial to properly manage the soil organic matter, and the application of compost derived from the vines themselves is a strategy to achieve this. The objective of this study was to evaluate the properties of soil treated with different doses of compost applied both on the vine row and the inter rows of a Vitis vinifera crop.

The experiment was established in May 2020, in three fields with clay contents ranging between 17-36%, with 7 treatments corresponding to compost application rates (0, 4, 10, 20 tons ha-1) and position (inter and intra row). Measurements of soil physical and chemical properties were taken, as well as variables related to the plants.

It was observed that the inter rows had a more deteriorated structural condition compared to the vine rows, especially at surface. However, the increase in compost doses led to a significant decrease in penetration resistance and a notable increase in coarse porosity, especially in soil with more than 20% clay. No evident changes were found in bulk density and soil aggregate stability. An increase in macronutrients (N, P, K) was detected because of compost application, although the effects varied according to soil type.

The treatments did not affect the physiological and productive variables of the plants, although an increase in some foliar nutrients and an improvement in the Ravaz index were observed with compost applications, indicating a more balanced proportion between grape production, and pruning mass. In conclusion, compost application has positive effects on soil properties, especially in the area between rows, by providing nutrients that promote the vegetative and productive balance of the vines, thereby contributing to sustainable production.

Acknowledgements: CORFO Project PI-3486

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Roa-Roco, Rosa1; Seguel, Oscar2; Raphahla, Sidney2; Fernández, Cristian2; Herrera, Carlos2; Tramon, Sebastián3; González, Alvaro1

1Centro de Investigación e Innovación, Viña Concha y Toro
2Universidad de Chile, Facultad de Ciencias Agronómicas
3Viñedos Emiliana

Contact the author*

Keywords

soil organic amendments, Vitis vinifera L., soil compaction

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The use of plasma activated water in barrel disinfection: impact on oak wood composition

The use of barrels is a practice that improves the quality of wines. The porous structure of wood favors the accumulation of microorganisms that can deteriorate the quality of wines so that barrel cleaning and sanitizing treatments are essential. The burning of sulphur discs has been the most common practice in winemaking because ots biocide effect. Nevertheless, its effectiveness is still insufficient and it is harmful for human health.

Study of Spanish wine sensory analysis data over a 3-year period

This study presents an investigation based on sensory analysis data of Spanish wines with geographical indications collected over a three-year period. Sensory analysis plays a crucial role in assessing the quality, characteristics, and perception of wines. The trained tasting panel at Dolmar Laboratory, accredited for objective sensory evaluation of wines since 2016, has been tasting over 5000 wines. However, it is since 2021, when a computer application for tastings was developed, that the digitalization of data allows for detailed statistical analysis of the results.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.