terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Exploring intra-vineyard variability with sensor- and molecular-based approaches 

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

Abstract

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Fourteen spots presenting intra-parcel variability were selected and monitored in a Cabernet Sauvignon vineyard in the Sonoma wine region (CA, USA) during 2017 growing season. The Normalized Difference Vegetation Index (NDVI) was calculated using data acquired by UAV platform equipped with a multispectral camera. The NDVI was then confronted with data obtained from direct measurements on the vines and the berries (e.g., leaf area, yield, and technological berry ripening parameters). Gene expression analysis by microarrays was performed at five time points over berry development spanning from the green to the ripening phase.

Multivariate and correlation analyses were applied to determine the relationship between the vegetation index, the direct vine and berry measurements, and the gene expression information. Spatial variation in berry chemistry (e.g., total anthocyanins) followed a similar pattern to that seen in the vineyard aerial imagery in relation to the vigor zones. On top of this, relevant correlation trends were found also with the expression of the genes related to the berry compounds. Coupling multidisciplinary approaches to map intra-vineyard variability increases the potential of predicting fruit quality and of guiding targeted vineyard management.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Ron Shmuleviz*1, Elizabeth Green2, Pietro Previtali2, Nick Dokoozlian2, Giovanni Battista Tornielli1, Marianna Fasoli1

1 Department of Biotechnology, University of Verona, 37134 Verona, Italy
2 E. & J. Gallo Winery, Modesto, CA 95354, USA

Contact the author*

Keywords

berry ripening, vegetation indices; gene expression analysis, sensors, precision viticulture  

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.

Irrigation frequency in four grapevine red varieties in Spain. Effect on must volatile composition

The irrigation water management in the vineyard is a crucial aspect to obtain sustainable quality production over time. Previous studies have set the water requirements to be applied in the vineyard at 30 % of the reference evapotranspiration (ET0), although there are no studies that settle the effects of the frequency of irrigation application on red varieties in Spain. The present study contemplates the application of deficit irrigation (30 % ET0) applying a weekly dose in a single irrigation (T07) or in two irrigation events (T03) per week. The study has been carried out in 2021-2022 with four red varieties in different Spanish wine regions: Garnacha Tinta (Badajoz), Tempranillo (Valladolid), Syrah (Albacete) and Mencía (Lugo). The effects of irrigation frequency on must volatile composition have been evaluated through GC-MS.

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.