terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Exploring intra-vineyard variability with sensor- and molecular-based approaches 

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

Abstract

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Fourteen spots presenting intra-parcel variability were selected and monitored in a Cabernet Sauvignon vineyard in the Sonoma wine region (CA, USA) during 2017 growing season. The Normalized Difference Vegetation Index (NDVI) was calculated using data acquired by UAV platform equipped with a multispectral camera. The NDVI was then confronted with data obtained from direct measurements on the vines and the berries (e.g., leaf area, yield, and technological berry ripening parameters). Gene expression analysis by microarrays was performed at five time points over berry development spanning from the green to the ripening phase.

Multivariate and correlation analyses were applied to determine the relationship between the vegetation index, the direct vine and berry measurements, and the gene expression information. Spatial variation in berry chemistry (e.g., total anthocyanins) followed a similar pattern to that seen in the vineyard aerial imagery in relation to the vigor zones. On top of this, relevant correlation trends were found also with the expression of the genes related to the berry compounds. Coupling multidisciplinary approaches to map intra-vineyard variability increases the potential of predicting fruit quality and of guiding targeted vineyard management.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Ron Shmuleviz*1, Elizabeth Green2, Pietro Previtali2, Nick Dokoozlian2, Giovanni Battista Tornielli1, Marianna Fasoli1

1 Department of Biotechnology, University of Verona, 37134 Verona, Italy
2 E. & J. Gallo Winery, Modesto, CA 95354, USA

Contact the author*

Keywords

berry ripening, vegetation indices; gene expression analysis, sensors, precision viticulture  

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Distribution and sensory impact of new oak wood-derived compounds in wines

Despite the numerous research studies carried out in recent years, the study of wine aroma remains of great interest due to its complexity. Wine maturation in oak barrels is described as an important step in the production of quality wines. In fact, oak wood develops several aromatic nuances through its toasting which can be released into the wine. A great deal of work has been performed in order to identify the wood-derived volatile compounds that contribute to wine aroma (e.g., whisky-lactone, maltol, eugenol, guaiacol, vanillin).

New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

The wine industry produces an enormous amount of waste every year. A wider inclusion of disregarded by-products in the human diet or its use as a source of bioactive compounds is a good strategy for reducing waste. It will not only introduce an added value to a waste product but also come upon the European Union and United Nations’ demands towards more sustainable agricultural approaches and circular economy.

Aromatic characterization of Moscato Giallo by GC-MS/MS and stable isotopic ratio analysis of the major volatile compounds

Among the Moscato grapes, Moscato Giallo is a winegrape variety characterized by a high content of free and glycosylated monoterpenoids, which gives very aromatic wines. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, HO-trienol, HO-diols, 8-Hydroxylinalool, geranic acid and β-myrcene, that give citrus, rose, and peach notes.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.

A comprehensive study on the effect of foliar mineral treatments on grapevine microbiota, flavonoid gene expression, and berry composition

Recently, foliar treatments with mineral-based compounds have shown positive effects on grapevine production by protecting grape from thermal excesses and reducing the decoupling between technological and phenolic maturity caused by climate change. Unraveling the effect of mineral particle applications on grape-associated microbes is pivotal for successful wine processing, due to the influence of the microbiota on wine composition and stability. To our knowledge, this is the first work that comprehensively studied the effects of kaolin and chabasite-rich zeolitites treatments on grape-related microorganisms (by real-time PCR quantification of total fungi, Hanseniospora uvarum, Metschnikowia pulcherrima, plant-associated bacteria and lactic acid bacteria), the expression of genes related to the flavonoid biosynthesis (PAL1, CHS1, F3H2, DFR, LDOX, UFGT, MYBA1, GST4, FLS4 genes) and the berry composition (°Brix, pH, acidity and anthocyanin concentrations) in cv. Sangiovese during ripening in two growing seasons (2019 and 2020).