terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Exploring intra-vineyard variability with sensor- and molecular-based approaches 

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

Abstract

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Fourteen spots presenting intra-parcel variability were selected and monitored in a Cabernet Sauvignon vineyard in the Sonoma wine region (CA, USA) during 2017 growing season. The Normalized Difference Vegetation Index (NDVI) was calculated using data acquired by UAV platform equipped with a multispectral camera. The NDVI was then confronted with data obtained from direct measurements on the vines and the berries (e.g., leaf area, yield, and technological berry ripening parameters). Gene expression analysis by microarrays was performed at five time points over berry development spanning from the green to the ripening phase.

Multivariate and correlation analyses were applied to determine the relationship between the vegetation index, the direct vine and berry measurements, and the gene expression information. Spatial variation in berry chemistry (e.g., total anthocyanins) followed a similar pattern to that seen in the vineyard aerial imagery in relation to the vigor zones. On top of this, relevant correlation trends were found also with the expression of the genes related to the berry compounds. Coupling multidisciplinary approaches to map intra-vineyard variability increases the potential of predicting fruit quality and of guiding targeted vineyard management.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Ron Shmuleviz*1, Elizabeth Green2, Pietro Previtali2, Nick Dokoozlian2, Giovanni Battista Tornielli1, Marianna Fasoli1

1 Department of Biotechnology, University of Verona, 37134 Verona, Italy
2 E. & J. Gallo Winery, Modesto, CA 95354, USA

Contact the author*

Keywords

berry ripening, vegetation indices; gene expression analysis, sensors, precision viticulture  

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

The wine industry produces an enormous amount of waste every year. A wider inclusion of disregarded by-products in the human diet or its use as a source of bioactive compounds is a good strategy for reducing waste. It will not only introduce an added value to a waste product but also come upon the European Union and United Nations’ demands towards more sustainable agricultural approaches and circular economy.

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].

Sustainable management of grapevine trunk diseases

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority.