terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Abstract

Brettanomyces is a world-renowned yeast that negatively impacts the chemical composition of wines through the production of metabolites that negatively impact the sensory properties of the final product. Its resilience in wine conditions and ability to produce off-flavors make it a challenge for winemakers. Currently, the primary control technique involves adding sulfur dioxide (SO2); however, some Brettanomyces strains are developing resistance to this preservative agent. [1] Therefore, new management strategies are necessary to control this spoilage yeast.

 

Mineral nutrients could be a promising approach to control Brettanomyces growth in winemaking. Magnesium (Mg2+), is specifically recognized as a protective element against yeast stress and can prevent cellular death from temperature shock and ethanol. [2] In this study, the effect of mineral concentration on Brettanomyces metabolism under winemaking conditions was investigated. Brettanomyces sensitivity to Mg2+ limitation was assessed by culturing it in the presence of decreasing Mg2+ concentrations. While 1 mg/L of Mg2+ supported normal growth, concentrations below 0.5 mg/L significantly limited growth, and 0.1 mg/L was unable to support proliferation. Long-term Mg2+ deficiency resulted in permanent viability reduction.

 

This nutritional study identifies Mg2+ as essential for Brettanomyces metabolism and provides a starting point for designing experiments to manage Brettanomyces spoilage in wine, improving quality and stability. Understanding the physiology and nutritional requirements of Brettanomyces can lead to more informed decisions and innovative strategies for managing spoilage, resulting in better wine quality, consumer satisfaction, and higher profits for the wine industry. The study assists in finding alternatives to SO2 to produce fault-free wines that align with current wine consumer preferences. 

Acknowledgments:

The ARC Training Centre for Innovative Wine Production

The Australian Wine Research Institute

Pernod Ricard Winemakers

References:

1)  Bartel, C., et al. (2021). “Adaptive evolution of sulfite tolerance in Brettanomyces bruxellensis.” FEMS Yeast Research 21(5), https://doi.org/10.1093/femsyr/foab036.

2)  Birch, R. M. and G. M. Walker (2000). “Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae.” Enzyme and Microbial Technology 26(9-10): 678-687, https://doi.org/10.1016/S0141-0229(00)00159-9.

 

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Giordano1-2, J. Macintyre3, A. Borneman1-4, P. Grbin1

1 Wine Science Discipline, School of Agriculture Food and Wine, Waite Research Institute, The University of Adelaide, Urrbrae, South Australia 5064, Australia
2 Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Urrbrae, South Australia 5064, Australia
3 Pernod Ricard Winemakers, 1914 Barossa Valley Way, Rowland Flat, SA 5352, Australia
4 The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia

Contact the author*

Keywords

Brettanomyces, wine spoilage, sulfur dioxide, mineral nutrients, magnesium, wine quality

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Improving our knowledge on biotic and abiotic factors that influence the composition of the grapevine mycobiome is of great agricultural significance, due to potential effects on plant health, productivity, and wine characteristics. Among the various environmental factors affecting the morphological, physiological, biochemical and molecular attributes of grapevine, drought stress is one of the most severe, becoming increasingly an issue worldwide.

Sustainable management of grapevine trunk diseases

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority.

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.