terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Abstract

Brettanomyces is a world-renowned yeast that negatively impacts the chemical composition of wines through the production of metabolites that negatively impact the sensory properties of the final product. Its resilience in wine conditions and ability to produce off-flavors make it a challenge for winemakers. Currently, the primary control technique involves adding sulfur dioxide (SO2); however, some Brettanomyces strains are developing resistance to this preservative agent. [1] Therefore, new management strategies are necessary to control this spoilage yeast.

 

Mineral nutrients could be a promising approach to control Brettanomyces growth in winemaking. Magnesium (Mg2+), is specifically recognized as a protective element against yeast stress and can prevent cellular death from temperature shock and ethanol. [2] In this study, the effect of mineral concentration on Brettanomyces metabolism under winemaking conditions was investigated. Brettanomyces sensitivity to Mg2+ limitation was assessed by culturing it in the presence of decreasing Mg2+ concentrations. While 1 mg/L of Mg2+ supported normal growth, concentrations below 0.5 mg/L significantly limited growth, and 0.1 mg/L was unable to support proliferation. Long-term Mg2+ deficiency resulted in permanent viability reduction.

 

This nutritional study identifies Mg2+ as essential for Brettanomyces metabolism and provides a starting point for designing experiments to manage Brettanomyces spoilage in wine, improving quality and stability. Understanding the physiology and nutritional requirements of Brettanomyces can lead to more informed decisions and innovative strategies for managing spoilage, resulting in better wine quality, consumer satisfaction, and higher profits for the wine industry. The study assists in finding alternatives to SO2 to produce fault-free wines that align with current wine consumer preferences. 

Acknowledgments:

The ARC Training Centre for Innovative Wine Production

The Australian Wine Research Institute

Pernod Ricard Winemakers

References:

1)  Bartel, C., et al. (2021). “Adaptive evolution of sulfite tolerance in Brettanomyces bruxellensis.” FEMS Yeast Research 21(5), https://doi.org/10.1093/femsyr/foab036.

2)  Birch, R. M. and G. M. Walker (2000). “Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae.” Enzyme and Microbial Technology 26(9-10): 678-687, https://doi.org/10.1016/S0141-0229(00)00159-9.

 

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Giordano1-2, J. Macintyre3, A. Borneman1-4, P. Grbin1

1 Wine Science Discipline, School of Agriculture Food and Wine, Waite Research Institute, The University of Adelaide, Urrbrae, South Australia 5064, Australia
2 Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Urrbrae, South Australia 5064, Australia
3 Pernod Ricard Winemakers, 1914 Barossa Valley Way, Rowland Flat, SA 5352, Australia
4 The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia

Contact the author*

Keywords

Brettanomyces, wine spoilage, sulfur dioxide, mineral nutrients, magnesium, wine quality

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Multiple sclerosis (MS) is a multifactorial autoimmune disease associating demyelination and axonal degeneration developing in young adults and affecting 2–3 million people worldwide. Plant polyphenols endowed with many therapeutic benefits associated with anti-inflammatory and antioxidant properties represent highly interesting new potential therapeutic strategies. We recently showed the safety and high efficiency of grape seed extract (GSE), a complex mixture of polyphenolics compounds comprising notably flavonoids and proanthocyanidins, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

Inert gases persistence in wine storage tank blanketing

It is common to find tanks in the winery with wine below their capacity due to wine transfers between tanks of different capacities or the interruption of operations for periods of a few days. This situation implies the existence of an ullage space in the tank with prolonged contact with the wine causing its absorption/oxidation. Oxygen uptake from the air headspace over the wine due to differences in the partial pressure of O2 can be rapid, up to 1.5 mL of O2 per liter of wine in one hour and 100 cm2 of surface area1 and up to saturation after 4 hours.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out.