OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 Are dicysteinyl polysulfanes responsible for post-bottling release of hydrogen sulfide?

Are dicysteinyl polysulfanes responsible for post-bottling release of hydrogen sulfide?

Abstract

Hydrogen sulfide (H2S) has a significant impact on wine aroma attributes and wine quality when present at concentrations above its aroma threshold of 1.1 to 1.6 μg/L. Therefore, the management of H2S concentrations in wines, whether from fermentation or “other” origins, is an important consideration for winemakers. The main techniques used for H2S removal are oxidative handling and/or copper fining; however, the effectiveness of these treatments may be temporary, as H2S can often reappear post-bottling along with other volatile sulfur compounds (VSCs) when reductive conditions are re-established. Moreover, it is proposed that oxidative treatments applied in the presence of copper may produce compounds such as disulfides and diorganopolysulfanes, which might initially appear stable but are susceptible to reductive cleavage, thereby potentially acting as latent sources of H2S. 

The aim of this study was to determine whether putative polysulfanes could act as latent sources of H2S during post-bottling storage. Experiments conducted in model wine enabled identification of four dicysteinyl polysulfanes when H2S was oxidised in the presence of cysteine, copper and iron. The stability of the dicysteinyl polysulfanes formed in-situ was evaluated and conditions impacting the release of H2S from the polysulfanes were also determined, which provided some understanding of the possible mechanisms of release. 

The results of this study showed that the stability of the dicysteinyl polysulfanes decreased as sulfur chain length increased, which accorded with the relative proportions of polysulfanes initially formed. 

Notably, H2S was released over time, with the greatest decline in polysulfane relative abundance and largest release of H2S (up to 212 μg/L) being associated with the addition of commonly used reducing agents, especially sulfur dioxide, to the model wines containing the polysulfanes. Desulfurisation of cysteine could account for only minor quantities of H2S. In addition, Cysteine-S-sulfonates were tentatively identified by mass spectrometry after six months of storage, and similarly to the parent polysulfanes, their relative concentrations decreased with increasing number of linking sulfur atoms. These results shed light on the potential pathways for reformation of VSCs in bottled wine and demonstrate that dicysteinyl polysulfanes may have the potential to act as latent sources of H2S in wine post-bottling, potentially via a sulfitolysis mechanism.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Marlize Bekker , David Jeffery, Gal Kreitman, John Danilewicz

The Australian Wine Research Institute PO Box 197 – Glen Osmond SA 5064 – Australia

Contact the author

Keywords

Polysulfanes, S-sulfonate, Copper, Sulfur dioxide 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

The importance of the physicochemical composition of wine on the score awarded in an official contest

The quality of wine is difficult to define. This is most certainly accredited to everyone´s different perception of quality. Some of the indicators of high-quality wines are color complexity and balance. Color is one of the most crucial attributes of quality, not only for the obvious implications for their perception but also because they are indicators of other aspects related to its aroma and taste.

Application of regenerative agriculture to viticulture: The REVINE project

Conventional viticulture improved the quality of production, but the economic costs can be unsustainable. Today, producers need to consider consumers’ demands for healthy, eco-friendly products. Institutions promote sustainable agriculture, with regenerative agriculture being the latest generation of methodologies focused on recovering losses and ensuring future sustainability. The revine project studies regenerative agricultural technology applied in mediterranean countries to provide precise indications for soil processing and effective vineyard treatments.

Climate change projections to support the transition to climate-smart viticulture

The Earth’s system is undergoing major changes through a wide range of spatial and temporal scales as a response to growing anthropogenic radiative forcing, which is pushing the whole system far beyond its natural variability. Sources of greenhouse gases largely exceed their sinks, thus leading to a strengthened greenhouse effect. More energy is thereby being supplied to the system, with inevitable shifts in climatic patterns and weather regimes. Over the last decades, these modifications have been manifested in the full statistical distributions of the atmospheric variables, with dramatic changes in the frequency and intensity of extremes. Natural hazards, such as severe droughts, floods, forest fires, or heatwaves, are being triggered by extreme atmospheric events worldwide, thus threatening human activities. Viticultculture is not only exposed to changing climates but is also highly vulnerable, as grapevine phenology and physiological development are strongly controlled by atmospheric conditions. Therefore, the assessment of climate change projections for a given region is critical for climate change adaptation and risk reduction in viticulture. By adopting timely and suitable measures, the future sustainability and resiliency of the sector can be fostered. Climate-grapevine chain modelling is an essential tool for better planning and management. However, the accuracy of the resulting projections is limited by many uncertainties that must be duly taken into account when transferring knowledge to stakeholders and decision-makers. Climate-smart viticulture will comprise ensembles of locally tuned strategies, envisioning both adaptation and mitigation, assisted by emerging technologies and decision-support systems.

Varieties and rootstocks: an important mean for adaptation to terroir

A large genetic diversity exists among V. vinifera varieties, but also among cultivated rootstocks. This diversity is important to adapt plant material to different environmental conditions

Study of the volatil profile of minority white varieties

The genetic material preservation is a priority issue in winemaking research. The recovery of minority grape varieties can control the genetic erosion, contributing also to preserve wine typical characteristics. In D.O.Ca. Rioja (Spain) the number of grown white varieties has been very limited, representing Viura the 91% of the cultivated white grape area in 2005, while the others, Garnacha Blanca and Malvasía riojana, hardly were grown. For this reason, a recovery and characterization study of plant material was carried out in this region. In 2008, the results obtained allowed the authorization of three minority white varieties: Tempranillo Blanco, Maturana Blanca and Turruntés.