OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 Are dicysteinyl polysulfanes responsible for post-bottling release of hydrogen sulfide?

Are dicysteinyl polysulfanes responsible for post-bottling release of hydrogen sulfide?

Abstract

Hydrogen sulfide (H2S) has a significant impact on wine aroma attributes and wine quality when present at concentrations above its aroma threshold of 1.1 to 1.6 μg/L. Therefore, the management of H2S concentrations in wines, whether from fermentation or “other” origins, is an important consideration for winemakers. The main techniques used for H2S removal are oxidative handling and/or copper fining; however, the effectiveness of these treatments may be temporary, as H2S can often reappear post-bottling along with other volatile sulfur compounds (VSCs) when reductive conditions are re-established. Moreover, it is proposed that oxidative treatments applied in the presence of copper may produce compounds such as disulfides and diorganopolysulfanes, which might initially appear stable but are susceptible to reductive cleavage, thereby potentially acting as latent sources of H2S. 

The aim of this study was to determine whether putative polysulfanes could act as latent sources of H2S during post-bottling storage. Experiments conducted in model wine enabled identification of four dicysteinyl polysulfanes when H2S was oxidised in the presence of cysteine, copper and iron. The stability of the dicysteinyl polysulfanes formed in-situ was evaluated and conditions impacting the release of H2S from the polysulfanes were also determined, which provided some understanding of the possible mechanisms of release. 

The results of this study showed that the stability of the dicysteinyl polysulfanes decreased as sulfur chain length increased, which accorded with the relative proportions of polysulfanes initially formed. 

Notably, H2S was released over time, with the greatest decline in polysulfane relative abundance and largest release of H2S (up to 212 μg/L) being associated with the addition of commonly used reducing agents, especially sulfur dioxide, to the model wines containing the polysulfanes. Desulfurisation of cysteine could account for only minor quantities of H2S. In addition, Cysteine-S-sulfonates were tentatively identified by mass spectrometry after six months of storage, and similarly to the parent polysulfanes, their relative concentrations decreased with increasing number of linking sulfur atoms. These results shed light on the potential pathways for reformation of VSCs in bottled wine and demonstrate that dicysteinyl polysulfanes may have the potential to act as latent sources of H2S in wine post-bottling, potentially via a sulfitolysis mechanism.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Marlize Bekker , David Jeffery, Gal Kreitman, John Danilewicz

The Australian Wine Research Institute PO Box 197 – Glen Osmond SA 5064 – Australia

Contact the author

Keywords

Polysulfanes, S-sulfonate, Copper, Sulfur dioxide 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Towards the definition of a detailed transcriptomic map of grape berry development

In the last years the application of genomic tools to the analysis of gene expression during grape berry development generated a huge amount of transcriptomic data

Revealing the aroma profile of Greek wines from indigenous grape cultivars

The indigenous Greek grape varieties Assyrtiko, Malagousia, Moschofilero and Roditis are used to produce white wines that are attracting the interest of wine producers and consumers due to their aromatic characteristics [1]. In addition, the Agiorgitiko and Xinomavro varieties are Greece’s most prominent red grape varieties.

Assessment of Mineral Elements in Wine Spirits Aged with Chestnut Wood

The mineral composition of wine spirit (WS) is of relevant interest due to its potential effect on physicochemical stability, sensory characteristics, and safety.1 Calcium (Ca) and iron (Fe) can form insoluble compounds, negatively affecting the WS clarity. Transition metals, e.g. Fe and copper (Cu), seem to play an important catalytic role on oxidation reactions involving phenolic compounds and other substrates for oxidation in WS

Publication of the 3rd edition of the OIV ampelographic descriptors

Ampelography is aimed at describing the vine according to several characteristics, such as morphology, agronomic aptitudes, technological potential, and genetics. The description of varieties and species of vitis has long been the subject of numerous scientific and technical studies by eminent specialists for a long time, which have led the OIV to publish in 1983 the “descriptor list for grape varieties and vitis species”, a milestone among the OIV worldwide recognised codes.

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L).