OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 Are dicysteinyl polysulfanes responsible for post-bottling release of hydrogen sulfide?

Are dicysteinyl polysulfanes responsible for post-bottling release of hydrogen sulfide?

Abstract

Hydrogen sulfide (H2S) has a significant impact on wine aroma attributes and wine quality when present at concentrations above its aroma threshold of 1.1 to 1.6 μg/L. Therefore, the management of H2S concentrations in wines, whether from fermentation or “other” origins, is an important consideration for winemakers. The main techniques used for H2S removal are oxidative handling and/or copper fining; however, the effectiveness of these treatments may be temporary, as H2S can often reappear post-bottling along with other volatile sulfur compounds (VSCs) when reductive conditions are re-established. Moreover, it is proposed that oxidative treatments applied in the presence of copper may produce compounds such as disulfides and diorganopolysulfanes, which might initially appear stable but are susceptible to reductive cleavage, thereby potentially acting as latent sources of H2S. 

The aim of this study was to determine whether putative polysulfanes could act as latent sources of H2S during post-bottling storage. Experiments conducted in model wine enabled identification of four dicysteinyl polysulfanes when H2S was oxidised in the presence of cysteine, copper and iron. The stability of the dicysteinyl polysulfanes formed in-situ was evaluated and conditions impacting the release of H2S from the polysulfanes were also determined, which provided some understanding of the possible mechanisms of release. 

The results of this study showed that the stability of the dicysteinyl polysulfanes decreased as sulfur chain length increased, which accorded with the relative proportions of polysulfanes initially formed. 

Notably, H2S was released over time, with the greatest decline in polysulfane relative abundance and largest release of H2S (up to 212 μg/L) being associated with the addition of commonly used reducing agents, especially sulfur dioxide, to the model wines containing the polysulfanes. Desulfurisation of cysteine could account for only minor quantities of H2S. In addition, Cysteine-S-sulfonates were tentatively identified by mass spectrometry after six months of storage, and similarly to the parent polysulfanes, their relative concentrations decreased with increasing number of linking sulfur atoms. These results shed light on the potential pathways for reformation of VSCs in bottled wine and demonstrate that dicysteinyl polysulfanes may have the potential to act as latent sources of H2S in wine post-bottling, potentially via a sulfitolysis mechanism.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Marlize Bekker , David Jeffery, Gal Kreitman, John Danilewicz

The Australian Wine Research Institute PO Box 197 – Glen Osmond SA 5064 – Australia

Contact the author

Keywords

Polysulfanes, S-sulfonate, Copper, Sulfur dioxide 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Preliminary evaluation of agronomic and enological properties of preselected grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

Cultivation of a few number of clones is causing the loss of vineyard biodiversity, resulting in the disappearance of biotypes that could be of interest to face future challenges,

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

Corvina berry morphology and grape composition as affected by two training system (Pergola and Guyot) in a context of climate change scenario

The Valpolicella area (Veneto Region, Italy) is famous for its high quality wines: Amarone and Recioto, both obtained from partial post-harvest dehydrated red grapes. The main cultivars used for these wines are Corvina and Corvinone. In this Region hundreds of years ago a particular training system (Pergola, cordon/cane with horizontal shoot-positioning) was developed. In the last 20 years the Guyot have been introduced in the area; now Pergola and Guyot are equally widespread in the Valpolicella area. In two different environmental conditions (hill and floodplain) two vineyards, one for each type of training system, were studied along two years (2011-2012).

Screening of hydroxytyrosol and tyrosine related metabolites in commercial wines by an UHPLC/MS validated method.

Hydroxytyrosol (HT) is a bioactive phenolic compound with antioxidant activity. Yeast synthetise tyrosol from tyrosine by the Ehrlich pathway which is subsequently hydroxylated to HT. The aim of the present work is to develop and validate an UHPLC–HRMS method to assess the metabolites involved in this pathway as well as to screen Spanish commercial wines for HT bioactive compound.

Generation and characterization of a training population in Vitis vinifera for enhanced genomic selection

Context and purpose of the study. Modern viticulture is facing significant challenges due to global climate changes, spanning from extreme heat spells and water scarcity to the acceleration of grapevine’s phenological development with important consequences from budbreak to harvest.