terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Abstract

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).

The cell wall fraction of strains from different yeast species were extracted by autolysis and alkali methods: Saccharomyces cerevisiae, Torulaspora delbrueckii, Lachancea thermotolerans and Metschnikowia pulcherrima. The profiles of the polysaccharide fraction were analyzed by HPLC-DAD and HRSEC-RID. The protein and glycoprotein profiles were analyzed by SDS-PAGE. The effect on MLF of the addition of 2 g/L of each mannoprotein extract was evaluated in a wine like-medium using the O. oeni strain PSU-1 (ATCC BAA-331). The consumption of L-malic was monitored by an enzymatic method. The analysis of mannoprotein consumption, in terms of equivalents of mannose, was carried out by HPLC-MWC-RID.

The polysaccharide composition and the size of mannoproteins extracted by the two methods were significantly different for all the mannoproteins. Protein and glycoprotein profiles were also different in all the studied yeast walls. The addition of mannoprotein extract influenced the evolution of MLF differently according to the extraction method. Mannoproteins obtained by the yeast autolysis showed a positive effect on MLF in all cases; this effect was also observed in two S. cerevisiae and L. thermotolerans extracted by the alkali method. However, MLF was arrested after consuming 0.5 g/L of L-malic acid in the rest of fermentations with mannoproteins obtained by the alkali method. The results obtained indicate that the capacity of O. oeni to use mannoproteins depends on the mannoprotein composition, which in turns depends on the yeast species and the extraction method.

Keywords: Malolactic fermentation, mannoproteins, Oenococcus oeni

1) Chu-Ky S. et al. (2005). Biochimica et Biophysica Acta 1717, 118-124
2) Diez L. et al. (2010). Journal of Agricultural and Food Chemistry. 58, 7731–7739

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Paloma Toraño 1a*, María Oyón-Ardoiz 2, Elvira Manjón 2, Ignacio García-Estévez 2, Albert Bordons1a, Nicolas Rozès 1b, M. Teresa Escribano-Bailón2, Cristina Reguant 1a

1a Grupo de Biotecnología Enológica, 1bGrupo de Biotecnología Microbiana de los Alimentos, Departamento de Bioquímica y Biotecnología, Universitat Rovira i Virgili, Tarragona, España
2 Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, España

Contact the author*

Keywords

Malolactic fermentation, mannoproteins, Oenococcus oeni

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out.

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.

A sensometabolomic approach to understand wine mouthfeel percepts

Targeted analytical methods can overlook compounds that are a priori unknown to play a role in the mouthfeel sensations. This limitation can be overcome with the information provided by untargeted metabolomic analysis using UPLC‐QTOF-MS. To this end, an untargeted metabolomic approach applied to 42 red wines has allowed development of a model with predictive capacity by cross-validation for the “dry”, “oily” and “unctuous” sensations perceived by a sensory panel. The optimal PLS model for “dry” retained compounds with positive regression coefficients (≥ 0.17) including a trimer procyanidin, a peptide, and four anthocyanins.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.