terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Abstract

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).

The cell wall fraction of strains from different yeast species were extracted by autolysis and alkali methods: Saccharomyces cerevisiae, Torulaspora delbrueckii, Lachancea thermotolerans and Metschnikowia pulcherrima. The profiles of the polysaccharide fraction were analyzed by HPLC-DAD and HRSEC-RID. The protein and glycoprotein profiles were analyzed by SDS-PAGE. The effect on MLF of the addition of 2 g/L of each mannoprotein extract was evaluated in a wine like-medium using the O. oeni strain PSU-1 (ATCC BAA-331). The consumption of L-malic was monitored by an enzymatic method. The analysis of mannoprotein consumption, in terms of equivalents of mannose, was carried out by HPLC-MWC-RID.

The polysaccharide composition and the size of mannoproteins extracted by the two methods were significantly different for all the mannoproteins. Protein and glycoprotein profiles were also different in all the studied yeast walls. The addition of mannoprotein extract influenced the evolution of MLF differently according to the extraction method. Mannoproteins obtained by the yeast autolysis showed a positive effect on MLF in all cases; this effect was also observed in two S. cerevisiae and L. thermotolerans extracted by the alkali method. However, MLF was arrested after consuming 0.5 g/L of L-malic acid in the rest of fermentations with mannoproteins obtained by the alkali method. The results obtained indicate that the capacity of O. oeni to use mannoproteins depends on the mannoprotein composition, which in turns depends on the yeast species and the extraction method.

Keywords: Malolactic fermentation, mannoproteins, Oenococcus oeni

1) Chu-Ky S. et al. (2005). Biochimica et Biophysica Acta 1717, 118-124
2) Diez L. et al. (2010). Journal of Agricultural and Food Chemistry. 58, 7731–7739

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Paloma Toraño 1a*, María Oyón-Ardoiz 2, Elvira Manjón 2, Ignacio García-Estévez 2, Albert Bordons1a, Nicolas Rozès 1b, M. Teresa Escribano-Bailón2, Cristina Reguant 1a

1a Grupo de Biotecnología Enológica, 1bGrupo de Biotecnología Microbiana de los Alimentos, Departamento de Bioquímica y Biotecnología, Universitat Rovira i Virgili, Tarragona, España
2 Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, España

Contact the author*

Keywords

Malolactic fermentation, mannoproteins, Oenococcus oeni

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2 reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage.

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.