terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Abstract

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).

The cell wall fraction of strains from different yeast species were extracted by autolysis and alkali methods: Saccharomyces cerevisiae, Torulaspora delbrueckii, Lachancea thermotolerans and Metschnikowia pulcherrima. The profiles of the polysaccharide fraction were analyzed by HPLC-DAD and HRSEC-RID. The protein and glycoprotein profiles were analyzed by SDS-PAGE. The effect on MLF of the addition of 2 g/L of each mannoprotein extract was evaluated in a wine like-medium using the O. oeni strain PSU-1 (ATCC BAA-331). The consumption of L-malic was monitored by an enzymatic method. The analysis of mannoprotein consumption, in terms of equivalents of mannose, was carried out by HPLC-MWC-RID.

The polysaccharide composition and the size of mannoproteins extracted by the two methods were significantly different for all the mannoproteins. Protein and glycoprotein profiles were also different in all the studied yeast walls. The addition of mannoprotein extract influenced the evolution of MLF differently according to the extraction method. Mannoproteins obtained by the yeast autolysis showed a positive effect on MLF in all cases; this effect was also observed in two S. cerevisiae and L. thermotolerans extracted by the alkali method. However, MLF was arrested after consuming 0.5 g/L of L-malic acid in the rest of fermentations with mannoproteins obtained by the alkali method. The results obtained indicate that the capacity of O. oeni to use mannoproteins depends on the mannoprotein composition, which in turns depends on the yeast species and the extraction method.

Keywords: Malolactic fermentation, mannoproteins, Oenococcus oeni

1) Chu-Ky S. et al. (2005). Biochimica et Biophysica Acta 1717, 118-124
2) Diez L. et al. (2010). Journal of Agricultural and Food Chemistry. 58, 7731–7739

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Paloma Toraño 1a*, María Oyón-Ardoiz 2, Elvira Manjón 2, Ignacio García-Estévez 2, Albert Bordons1a, Nicolas Rozès 1b, M. Teresa Escribano-Bailón2, Cristina Reguant 1a

1a Grupo de Biotecnología Enológica, 1bGrupo de Biotecnología Microbiana de los Alimentos, Departamento de Bioquímica y Biotecnología, Universitat Rovira i Virgili, Tarragona, España
2 Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, España

Contact the author*

Keywords

Malolactic fermentation, mannoproteins, Oenococcus oeni

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.

A comprehensive study on the effect of foliar mineral treatments on grapevine microbiota, flavonoid gene expression, and berry composition

Recently, foliar treatments with mineral-based compounds have shown positive effects on grapevine production by protecting grape from thermal excesses and reducing the decoupling between technological and phenolic maturity caused by climate change. Unraveling the effect of mineral particle applications on grape-associated microbes is pivotal for successful wine processing, due to the influence of the microbiota on wine composition and stability. To our knowledge, this is the first work that comprehensively studied the effects of kaolin and chabasite-rich zeolitites treatments on grape-related microorganisms (by real-time PCR quantification of total fungi, Hanseniospora uvarum, Metschnikowia pulcherrima, plant-associated bacteria and lactic acid bacteria), the expression of genes related to the flavonoid biosynthesis (PAL1, CHS1, F3H2, DFR, LDOX, UFGT, MYBA1, GST4, FLS4 genes) and the berry composition (°Brix, pH, acidity and anthocyanin concentrations) in cv. Sangiovese during ripening in two growing seasons (2019 and 2020).