terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Abstract

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).

The cell wall fraction of strains from different yeast species were extracted by autolysis and alkali methods: Saccharomyces cerevisiae, Torulaspora delbrueckii, Lachancea thermotolerans and Metschnikowia pulcherrima. The profiles of the polysaccharide fraction were analyzed by HPLC-DAD and HRSEC-RID. The protein and glycoprotein profiles were analyzed by SDS-PAGE. The effect on MLF of the addition of 2 g/L of each mannoprotein extract was evaluated in a wine like-medium using the O. oeni strain PSU-1 (ATCC BAA-331). The consumption of L-malic was monitored by an enzymatic method. The analysis of mannoprotein consumption, in terms of equivalents of mannose, was carried out by HPLC-MWC-RID.

The polysaccharide composition and the size of mannoproteins extracted by the two methods were significantly different for all the mannoproteins. Protein and glycoprotein profiles were also different in all the studied yeast walls. The addition of mannoprotein extract influenced the evolution of MLF differently according to the extraction method. Mannoproteins obtained by the yeast autolysis showed a positive effect on MLF in all cases; this effect was also observed in two S. cerevisiae and L. thermotolerans extracted by the alkali method. However, MLF was arrested after consuming 0.5 g/L of L-malic acid in the rest of fermentations with mannoproteins obtained by the alkali method. The results obtained indicate that the capacity of O. oeni to use mannoproteins depends on the mannoprotein composition, which in turns depends on the yeast species and the extraction method.

Keywords: Malolactic fermentation, mannoproteins, Oenococcus oeni

1) Chu-Ky S. et al. (2005). Biochimica et Biophysica Acta 1717, 118-124
2) Diez L. et al. (2010). Journal of Agricultural and Food Chemistry. 58, 7731–7739

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Paloma Toraño 1a*, María Oyón-Ardoiz 2, Elvira Manjón 2, Ignacio García-Estévez 2, Albert Bordons1a, Nicolas Rozès 1b, M. Teresa Escribano-Bailón2, Cristina Reguant 1a

1a Grupo de Biotecnología Enológica, 1bGrupo de Biotecnología Microbiana de los Alimentos, Departamento de Bioquímica y Biotecnología, Universitat Rovira i Virgili, Tarragona, España
2 Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, España

Contact the author*

Keywords

Malolactic fermentation, mannoproteins, Oenococcus oeni

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Development and validation of a free solvent UHPLC/MS-MS method to analyse melatonin and its precursors in Spanish commercial wines  

Melatonin is a bioactive compound present in foods and beverages such as wines. During alcoholic fermentation, yeast transforms tryptophan into certain indole compounds, including melatonin. This paper aims to develop and validate a free solvent analytical method by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC/MS-MS) to determine melatonin and its precursors (L-tryptophan, tryptamine, serotonin, tryptophol, N-acetylserotonin, 5-hydroxytryptophan, and 3- indoleacetic) that appropriately prevent the matrix effect.

Green pruning of shoots to force new sprouting of buds, in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

The context of climate crisis leads to the acceleration of technological ripening of grapes, with unsuitable loss of acidity, so various vineyard management alternatives are being considered to delay the grape ripening. The delay of the vegetative cycle towards a period of milder temperatures affects ripening, but vine behavior can vary according to the area, conduction, watering, variety, etc. A work is proposed to know the response to the green pruning of shoots, executed in fruit set and in pea size, in cv. Verdejo.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.