terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Abstract

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).

The cell wall fraction of strains from different yeast species were extracted by autolysis and alkali methods: Saccharomyces cerevisiae, Torulaspora delbrueckii, Lachancea thermotolerans and Metschnikowia pulcherrima. The profiles of the polysaccharide fraction were analyzed by HPLC-DAD and HRSEC-RID. The protein and glycoprotein profiles were analyzed by SDS-PAGE. The effect on MLF of the addition of 2 g/L of each mannoprotein extract was evaluated in a wine like-medium using the O. oeni strain PSU-1 (ATCC BAA-331). The consumption of L-malic was monitored by an enzymatic method. The analysis of mannoprotein consumption, in terms of equivalents of mannose, was carried out by HPLC-MWC-RID.

The polysaccharide composition and the size of mannoproteins extracted by the two methods were significantly different for all the mannoproteins. Protein and glycoprotein profiles were also different in all the studied yeast walls. The addition of mannoprotein extract influenced the evolution of MLF differently according to the extraction method. Mannoproteins obtained by the yeast autolysis showed a positive effect on MLF in all cases; this effect was also observed in two S. cerevisiae and L. thermotolerans extracted by the alkali method. However, MLF was arrested after consuming 0.5 g/L of L-malic acid in the rest of fermentations with mannoproteins obtained by the alkali method. The results obtained indicate that the capacity of O. oeni to use mannoproteins depends on the mannoprotein composition, which in turns depends on the yeast species and the extraction method.

Keywords: Malolactic fermentation, mannoproteins, Oenococcus oeni

1) Chu-Ky S. et al. (2005). Biochimica et Biophysica Acta 1717, 118-124
2) Diez L. et al. (2010). Journal of Agricultural and Food Chemistry. 58, 7731–7739

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Paloma Toraño 1a*, María Oyón-Ardoiz 2, Elvira Manjón 2, Ignacio García-Estévez 2, Albert Bordons1a, Nicolas Rozès 1b, M. Teresa Escribano-Bailón2, Cristina Reguant 1a

1a Grupo de Biotecnología Enológica, 1bGrupo de Biotecnología Microbiana de los Alimentos, Departamento de Bioquímica y Biotecnología, Universitat Rovira i Virgili, Tarragona, España
2 Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, España

Contact the author*

Keywords

Malolactic fermentation, mannoproteins, Oenococcus oeni

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

Metatranscriptomic analysis of “aszú” berries: the potential role of the most important species of the grape microbiota in the aroma of wines with noble rot

Botrytis cinerea has more than 1200 host plants and is one of the most important plant pathogens in viticulture. Under certain environmental conditions, it can lead to the development of a noble rot, which results in a specific metabolic profile, altering physical texture and chemical composition. The other microbes involved in this process and their functional genes are poorly characterised. We have generated metatranscriptomic [1,2] and DNA metabarcoding data from three months of the Furmint grape variety, representing the four phases of noble rot, from healthy berries to completely dried berries.

is the overall ecological awarness among Spanish winemakers related to their attitudes towards natural wines?

The Agenda 2030 of the EU sets out the main guidelines for transitioning towards a resilient, green and safe economy. To this regard, the wine sector is experiencing an ecological transition in different ways such as increasing the production of ecological crops, or promoting the production of wines under more environmental-friendly and healthier (i.e., lower levels of SO2) products. These alternatives to conventional production are a smaller proportion of wines, in constant growth and demand, and follow alternative and minority practices, which range from sustainable to deeply philosophical thoughts. Among these methods there are organic, biodynamic and, more recently, natural wines.

Moderate wine consumption – part of a balanced diet or a health risk?

Consumption of wine/alcoholic beverages remains a topic of great uncertainty and controversy worldwide. The term “no safe level” dominates the media communication and policy ever since population studies in 2018 [1,2] were published, which denied the existence of a J-curve and suggested that ANY consumption of an alcoholic beverage is harmful to health. The scientific evidence accumulated during the past decades about the health benefits of moderate wine consumption, were questioned and drinking guidelines considered to be too loose.