OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 NMR approach for monitoring the photo-degradation of riboflavin and methionine

NMR approach for monitoring the photo-degradation of riboflavin and methionine

Abstract

The light exposure of white wine is responsible for several reactions leading to changes on colour, flavours and, consequently, affecting the sensory profile. These reactions can take place when the white wine is bottled in clear glass and their mechanisms are dependent on both light exposure and chemical composition of white wine. Particular attention has been given to the reaction involving riboflavin (RF), a photo-sensitizer compound, and methionine (Met), a sulfur-containing amino acid, that can cause the formation of volatile sulphur compounds (VSCs), namely methanethiol and dimethyl disulfide. These compounds are responsible for a defect known as light-struck taste. Previous studies showed that hydrolysable tannins, in particular those from nut galls, limited both the degradation of Met and the formation of VSCs. The effectiveness of hydrolysable tannins was also proved after light exposure and storage for 24 months.

 In order to better understand the role of tannins in the photo-degradative reactions, an NMR approach was carried out. A solution containing RF (0.2 mM) and Met (2 mM) acidified at pH 3.2 was exposed to light by using fluorescence light bulbs. The solution was exposed to light up to two hours sampling it every 15 minutes. The same experimental conditions were applied in presence of gallic acid (2 mM), a constitutive unit of nut gall tannins.

 The degradation of RF and Met was monitored and, as expected, their signals decreased as the light exposure increased. Results provided evidence that a new signal appeared at 2.64 ppm. This signal was assigned to the SOCH3 moiety of methionine sulfoxide through the addition of the standard solution and standard 2D-NMR assignment techniques. The formation kinetic of methionine sulfoxide was measured for increased duration of light exposure and its rate resulted two-folds lower with the addition of gallic acid. This result suggests that the limited degradation of Met in presence of tannins, also observed in previous studies, is due to their action as competitor with Met in reducing RF from its excited form.

 The NMR technique was suitable for monitoring the photo-degradative reaction of RF and Met. Further researches have been carried out in order to verify and prove the ability of tannins in quenching both singlet oxygen and RF.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Daniela Fracassetti, Melissa Mastro, Sara Limbo, Antonio Tirelli, Enzio Ragg

Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano Via G. Celoria, 2 20133 Milan (Italy)

Contact the author

Keywords

Light exposure, Nuclear Magnetic Resonance, Oxidation, Tannins 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

A blueprint for managing vine physiological balance at different spatial and temporal scales in Champagne

In Champagne, the vine adaptation to different climatic and technical changes during these last 20 years can be seen through physiological balance disruptions. These disruptions emphasize the general grapevine decline. Since the 2000s, among other nitrogen stress indicators, the must nitrogen has been decreasing. The combination of restricted mineral fertilizers and herbicide use, the growing variability of spring rainfall, the increasing thermal stress as well as the soil type heterogeneity are only a few underlying factors that trigger loss of physiological balance in the vineyards. It is important to weigh and quantify the impact of these factors on the vine. In order to do so, the Comité Champagne uses two key-tools: networking and modelization. The use of quantitative and harmonized ecophysiological indicators is necessary, especially in large spatial scales such as the Champagne appellation. A working group with different professional structures of Champagne has been launched by the Comité Champagne in order to create a common ecophysiology protocol and thus monitor the vine physiology, yearly, around 100 plots, with various cultural practices and types of soil. The use of crop modelling to follow the vine physiological balance within different pedoclimatic conditions enables to understand the present balance but also predict the possible disruptions to come in future climatic scenarios. The physiological references created each year through the working group, benefit the calibration of the STICS model used in Champagne. In return, the model delivers ecophysiology indicators, on a daily scale and can be used on very different types of soils. This study will present the bottom-up method used to give accurate information on the impacts of soil, climate and cultural practices on vine physiology.

Pierce’s disease of grapevines, a new threat to the wine industry in Southern Europe

Pierce’s disease (PD) is considered a potential threat to european viticulture (EPPO a2 list of pathogens since 1981). In the usa, infections caused by the vector-borne bacterium xylella fastidiosa have caused recurrent damage to vineyards in California and the southeastern states. However, vineyards in Europe have remained free of PD until recently, when it was first detected on the island of Mallorca in 2017. The reasons for the absence of PD in continental Europe have not been convincingly explained.

Différenciation de parcelles de Chenin du Val de Loire, a l’aide de l’etude des flores fongiques des raisins, en utilisant l’outil DGGE

Depuis le millésime 2002, une étude est menée sur la diversité de la flore fongique de parcelles du cépage chenin, situées essentiellement sur les appellations de Vouvray et Montlouis ; deux appellations séparées par le fleuve nommé la Loire. Les parcelles se situent dans des conditions pédoclimatiques différentes, qui se retrouvent au travers des suivis de maturité et l’état sanitaire.

Grapevine, berry and soil Indicators to manage minimal irrigation strategy in semi-arid conditions: example of Grenache noir (Vitis vinifera L.)

Context and purpose of the study. Climate change in many Mediterranean wine-growing regions is resulting in lower rainfall and higher reference evapotranspiration, generally leading to reduced water availability for vines.

When organic chemistry contributes to the understanding of metabolism mechanisms

Many compounds of interest in wine are difficult to analyze since they are present in very small quantities or they are unstable. The need for reliable data led scientists to develop complex method in order to overcome the analytical difficulties and provide accurate quantitative data for grape or wine characterization.