OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 NMR approach for monitoring the photo-degradation of riboflavin and methionine

NMR approach for monitoring the photo-degradation of riboflavin and methionine

Abstract

The light exposure of white wine is responsible for several reactions leading to changes on colour, flavours and, consequently, affecting the sensory profile. These reactions can take place when the white wine is bottled in clear glass and their mechanisms are dependent on both light exposure and chemical composition of white wine. Particular attention has been given to the reaction involving riboflavin (RF), a photo-sensitizer compound, and methionine (Met), a sulfur-containing amino acid, that can cause the formation of volatile sulphur compounds (VSCs), namely methanethiol and dimethyl disulfide. These compounds are responsible for a defect known as light-struck taste. Previous studies showed that hydrolysable tannins, in particular those from nut galls, limited both the degradation of Met and the formation of VSCs. The effectiveness of hydrolysable tannins was also proved after light exposure and storage for 24 months.

 In order to better understand the role of tannins in the photo-degradative reactions, an NMR approach was carried out. A solution containing RF (0.2 mM) and Met (2 mM) acidified at pH 3.2 was exposed to light by using fluorescence light bulbs. The solution was exposed to light up to two hours sampling it every 15 minutes. The same experimental conditions were applied in presence of gallic acid (2 mM), a constitutive unit of nut gall tannins.

 The degradation of RF and Met was monitored and, as expected, their signals decreased as the light exposure increased. Results provided evidence that a new signal appeared at 2.64 ppm. This signal was assigned to the SOCH3 moiety of methionine sulfoxide through the addition of the standard solution and standard 2D-NMR assignment techniques. The formation kinetic of methionine sulfoxide was measured for increased duration of light exposure and its rate resulted two-folds lower with the addition of gallic acid. This result suggests that the limited degradation of Met in presence of tannins, also observed in previous studies, is due to their action as competitor with Met in reducing RF from its excited form.

 The NMR technique was suitable for monitoring the photo-degradative reaction of RF and Met. Further researches have been carried out in order to verify and prove the ability of tannins in quenching both singlet oxygen and RF.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Daniela Fracassetti, Melissa Mastro, Sara Limbo, Antonio Tirelli, Enzio Ragg

Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano Via G. Celoria, 2 20133 Milan (Italy)

Contact the author

Keywords

Light exposure, Nuclear Magnetic Resonance, Oxidation, Tannins 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Why aren’t farmers using precision viticulture frequently? A case study

n the last years, viticulture precision tools have been made available for farmers for different crops. The feeling that these tools are mandatory on an agriculture of the future have been disseminated by commercial entities but also from policy makers.

An overview of wine sensory characterization: from classical descriptive analysis to the emergence of novel profiling techniques

The wine industry requires coexistence between tradition and innovation to meet consumers’ preferences. Sensory science allows the objective quantification of consumers’ understanding of a product and subjective feedback of consumer’s perception through acceptance or rejection of stimulus or even describing emotions evoked [1]. To measure sensations, emotions and liking, and their dynamics over time, time-intensity methods are crucial tools with growing interest in sensory science [2].

Effect of mannoproteins extracted from Torulaspora delbrueckii on wine flavanol composition and on flavanol-salivary protein interactions

Global climate change is exerting an influence on vine phenology, leading to a decoupling of technological and phenolic maturity of grapes. This results in the modification of berry chemical composition, which can translate into wines with excessive astringency. The addition of mannoproteins (MP) to wine has been proposed as a way of mitigating this problem, since some studies have shown that MPs can modulate wine astringency. However, the mechanism underlying the astringency modulation effect of MPs is not well known and it seems to be dependent on the compositional and structural characteristics of the MP.

Evaluation of six red grapevine cultivars inoculated with Neofusicoccum parvum in a “terroir” of La Mancha wine región (Spain)

Aim: Among Botryosphaeriaceae species associated with Botryosphaeria dieback of grapevines, Neofusicoccum parvum is one of the most virulent and fastest wood-colonizing fungi. This study aimed to evaluate the susceptibility of six red grapevine cultivars (“Bobal”, “Monastrell”, “Garnacha Tinta”, “Moravia Agria”, “Tinto Velasco” and “Moribel” to N. parvum, under field conditions.

Drought tolerance of varieties in semi-arid areas: can the behavior of Tempranillo be improved by varieties of its own lineage?

Tempranillo is the most widely grown red grapevine variety in Spain, currently representing 42% of the total number of red varieties and 21% of the total vineyard area. Due to the economic importance that this variety represents in Spanish viticulture, in some areas where it is traditionally grown, there is a special concern about the viability of the future growing of this variety is being compromised by the climate change effects.