terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Assessment of plant water consumption rates under climate change conditions through an automated modular platform

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

Abstract

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo). However, plant water consumption had much strongercorrelations with leaf area and substrate available water content. Interestingly, an increase in 4oC and 700 ppm of CO2 did not result in higher water consumption rates when plants had similar leaf areas. This is supported by the lack of differences in discrete leaf transpiration (E) rates determined throughout the same period. Stomatal conductance was significantly lower in +4oC and 700 ppm plants, which agrees with the reported effect of CO2 in previous studies. Although further investigation will be carried out to determine the impact of each of the climate change factors on daily water consumption rates, photosynthetic acclimation to elevated CO2 may be a key factor for the adaptation of crops to water scarcity.

Keywords: Climate change, water stress, temperature, elevated CO2, evapotranspiration, stomatal regulation.

Acknowledgements: Thanks to A. Urdiain, M. Oyarzun & H. Santesteban for technical support. Ministerio de Ciencia e Innovación (Gobierno de España; Ref. PID2020-118337RB-IOO) and “ANDIA talento senior 2021” (Gobierno de Navarra) funded the research.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Johann Martinez-Lüscher 1*, Inmaculada Pascual, Nieves Goicoechea

1Universidad de Navarra-BIOMA, Plant Stress Physiology Group (Associated Unit to CSIC, EEAD, Zaragoza). Irunlarrea 1, 31008, Pamplona (Spain)

Contact the author*

Keywords

climate change, water stress, temperature, elevated CO2, evapotranspiration, stomatal regulation

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.

Development and validation of a free solvent UHPLC/MS-MS method to analyse melatonin and its precursors in Spanish commercial wines  

Melatonin is a bioactive compound present in foods and beverages such as wines. During alcoholic fermentation, yeast transforms tryptophan into certain indole compounds, including melatonin. This paper aims to develop and validate a free solvent analytical method by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC/MS-MS) to determine melatonin and its precursors (L-tryptophan, tryptamine, serotonin, tryptophol, N-acetylserotonin, 5-hydroxytryptophan, and 3- indoleacetic) that appropriately prevent the matrix effect.

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.