terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Abstract

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).

In a first experiment, five levels of toasting intensity were selected and applied to Q. sessilis oak wood samples (control, 160 °C, 180 °C, 200 °C and 220 °C, 30 min, n=3). Organic extracts were prepared (CH2Cl2, 50 g/L) and analyzed by GCxGC-ToFMS on a combination of conventional nonpolar/midpolar columns (DB-5ms/Rxi-17Sil). Data processing was as follows: mass spectra (TIC) were deconvoluted (ChromaTOF software) and compared to spectra from a database for a tentative peak identification and some “filters” were applied to reduce the number of processed peaks. Using an R script, we identified 77 molecular markers associated with toasting intensity. Some of them were sensory active and well known in oak wood, such as guaiacol, creosol and isoeugenol, while others were identified for the first time, such as 2-methylbenzofuran (burnt), 3-methylcyclohexane-1,2-dione (coffee) and 2-hydroxy-2-cyclopenten-1-one (caramel). Their sensory impact was assessed by GC-MS and sensory analysis. Applying the same methodology through the previously developed R script, additional results were discussed on the ability of GCxGC-ToFMS to distinguish the botanical origins of oak wood (Q. sessilis, Q. robur, Q. alba).

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Marie Courregelongue1,2,3*, Warren Albertin1,2,4, Andrei Prida3, Alexandre Pons1,2,3

1Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

3Tonnellerie Seguin Moreau, Merpins, France
4ENSCBP, Bordeaux INP, 33600, Pessac, France

Contact the author*

Keywords

untargeted analysis, GCxGC-ToFMS, oak wood, thermal degradation, volatile compounds

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

The wine industry is increasing the demand for indigenous yeasts adapted to the terroir to produce unique wines that reflect the distinctive characteristics of each region. In our group, we have identified and characterized 60 native yeast strains isolated from a vineyard in Maldonado-Uruguay, in which three strains stood out: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. Their oenological potential was evaluated at a semi-pilot scale in Tannat must vinification in the wine cellar to have a more precise and representative evaluation of the final product.

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.