terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Abstract

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).

In a first experiment, five levels of toasting intensity were selected and applied to Q. sessilis oak wood samples (control, 160 °C, 180 °C, 200 °C and 220 °C, 30 min, n=3). Organic extracts were prepared (CH2Cl2, 50 g/L) and analyzed by GCxGC-ToFMS on a combination of conventional nonpolar/midpolar columns (DB-5ms/Rxi-17Sil). Data processing was as follows: mass spectra (TIC) were deconvoluted (ChromaTOF software) and compared to spectra from a database for a tentative peak identification and some “filters” were applied to reduce the number of processed peaks. Using an R script, we identified 77 molecular markers associated with toasting intensity. Some of them were sensory active and well known in oak wood, such as guaiacol, creosol and isoeugenol, while others were identified for the first time, such as 2-methylbenzofuran (burnt), 3-methylcyclohexane-1,2-dione (coffee) and 2-hydroxy-2-cyclopenten-1-one (caramel). Their sensory impact was assessed by GC-MS and sensory analysis. Applying the same methodology through the previously developed R script, additional results were discussed on the ability of GCxGC-ToFMS to distinguish the botanical origins of oak wood (Q. sessilis, Q. robur, Q. alba).

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Marie Courregelongue1,2,3*, Warren Albertin1,2,4, Andrei Prida3, Alexandre Pons1,2,3

1Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

3Tonnellerie Seguin Moreau, Merpins, France
4ENSCBP, Bordeaux INP, 33600, Pessac, France

Contact the author*

Keywords

untargeted analysis, GCxGC-ToFMS, oak wood, thermal degradation, volatile compounds

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.

Evaluation of the effects of pruning methodology on the development of young vines 

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines.

Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Light is responsible for adverse reactions in wine including the formation of unpleasant flavors, loss of vitamins or photodegradation of anthocyanins. Among them, the riboflavin degradation leads to the formation of undesirable volatile compounds, known as light-struck taste. These photo-chemical reactions could be avoided by simply using opaque packaging. However, most rosé wines are kept in transparent bottles due to different commercial reasons. Some agri-food waste extracts have been studied for their photoprotective action which turn to be highly correlated with phenolic content [1].

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest.

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.