terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Abstract

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis  mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum). A total of 43 different VOCs were detected in both varieties by gas chromatography coupled to mass spectrometry (SPME GC-MS). The quantitative analyses revealed that leaves of CS had higher concentration of VOCs than those of T, the effect of the mycorrhizal symbiosis on the total levels of VOCs being non-significant. The predominant VOCs were those synthetized by the LOX/HPL pathway, followed by those coming from MVA/MEP pathway and, in a lesser extent, from SK pathway. Pentyl leaf volatiles (PLV), green leaf volatiles (GLV) and VOCs involved in the resistance of grapevine against Plasmopara viticola were more abundant in CS than in T, especially when plants were associated with AMF. The volatilome profiles obtained revealed that some minor VOCs were only present in one of the two tested grapevine varieties. Mycorrhizal association increased the relative abundance (%) of VOCs derived from the SK pathway in T and that of GLV in CS.

Acknowledgements: To A. Urdiain, M. Oyarzun & H. Santesteban for technical support, Asociación de Amigos (UNAV) for D. Kozikova’s scholarship, Bioera SL for AMF, Ministerio de Ciencia e Innovación (Gobierno España) funded the research (Ref. PID2020-118337RB-IOO)

References:

1)  Velásquez A. et al. (2020) The arbuscular mycorrhizal fungus Funneliformis mosseae induces changes and increases the concentration of volatile organic compounds in Vitis vinifera cv. Sangiovese leaf tissue. Plant Physiol. Biochem. 155: 437-443, DOI 10.1016/j.plaphy.2020.06.048

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Goicoechea Nieves1*, Kozikova Daria1, Pascual Inmaculada1

1Environmental Biology department- Group of Stress Physiology in Plants. School of Sciences-BIOMA, University of Navarra. Irunlarrea 1, 31008-Pamplona, Spain

Contact the author*

Keywords

Cabernet Sauvignon, leaves, mycorrhizal symbiosis, Tempranillo, volatile organic compounds

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Phenolic composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Grape and wine phenolic compounds have been shown to be highly related to both wine quality (color, flavor, and taste) and health-promoting properties (antioxidant and cardioprotective, among others). The aim of this work was to evaluate and compare the phenolic contents of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain vintage 2022. In addition, the phenolic profiles of the Portuguese wines from three vintages (2020, 2021, 2022) was compared.

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.

Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

A large population of vines of the Mandón minority red variety (synonymous with Garró) has been located in old vineyards of the D.O. Arribes (Zamora and Salamanca) to conserve and recover this minority variety. The wines made with this variety are characterized by their good structure and color, interesting harmony, an excellently low pH, with high acidity, as well as complex aromas of blue fruits and a marked and expressive minerality.

Sensory profile of wines obtained from disease-resistant varieties in La Rioja

The European wine industry is facing multiple challenges derived from climate change and the pressure of different fungal diseases that are compromising the production of traditional varieties. A sustainable alternative maybe the adoption of resistant varieties.
In this study, we have evaluated the enological potential of 9 resistant varieties (5 white and 4 red varieties) in La Rioja. Microvinifications were carried out with three biological replications. Oenological parameters were very diverse with acid content varying from 2.6 g/L to 6.6 g/L.

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.