terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Abstract

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis  mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum). A total of 43 different VOCs were detected in both varieties by gas chromatography coupled to mass spectrometry (SPME GC-MS). The quantitative analyses revealed that leaves of CS had higher concentration of VOCs than those of T, the effect of the mycorrhizal symbiosis on the total levels of VOCs being non-significant. The predominant VOCs were those synthetized by the LOX/HPL pathway, followed by those coming from MVA/MEP pathway and, in a lesser extent, from SK pathway. Pentyl leaf volatiles (PLV), green leaf volatiles (GLV) and VOCs involved in the resistance of grapevine against Plasmopara viticola were more abundant in CS than in T, especially when plants were associated with AMF. The volatilome profiles obtained revealed that some minor VOCs were only present in one of the two tested grapevine varieties. Mycorrhizal association increased the relative abundance (%) of VOCs derived from the SK pathway in T and that of GLV in CS.

Acknowledgements: To A. Urdiain, M. Oyarzun & H. Santesteban for technical support, Asociación de Amigos (UNAV) for D. Kozikova’s scholarship, Bioera SL for AMF, Ministerio de Ciencia e Innovación (Gobierno España) funded the research (Ref. PID2020-118337RB-IOO)

References:

1)  Velásquez A. et al. (2020) The arbuscular mycorrhizal fungus Funneliformis mosseae induces changes and increases the concentration of volatile organic compounds in Vitis vinifera cv. Sangiovese leaf tissue. Plant Physiol. Biochem. 155: 437-443, DOI 10.1016/j.plaphy.2020.06.048

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Goicoechea Nieves1*, Kozikova Daria1, Pascual Inmaculada1

1Environmental Biology department- Group of Stress Physiology in Plants. School of Sciences-BIOMA, University of Navarra. Irunlarrea 1, 31008-Pamplona, Spain

Contact the author*

Keywords

Cabernet Sauvignon, leaves, mycorrhizal symbiosis, Tempranillo, volatile organic compounds

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Understanding grapevine molecular processes and the underlying defence responses is vital for developing sustainable disease control strategies. Lipid signalling pathways, involving the synthesis and degradation of lipid molecules, have emerged as a key regulator in plant defence against pathogens. This study aims to elucidate the role of fatty acids and lipid signalling in grapevine’s defence response to P. viticola infection. The expression of lipid metabolism-related as well as lipid signalling genes was analysed, by qPCR, in three grapevine genotypes: Chardonnay (susceptible), Regent (tolerant) with Rpv3-1 resistance loci, and Sauvignac (resistant) harbouring a pyramid of Rpv12 and Rpv3-1 resistance loci.

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.

Inert gases persistence in wine storage tank blanketing

It is common to find tanks in the winery with wine below their capacity due to wine transfers between tanks of different capacities or the interruption of operations for periods of a few days. This situation implies the existence of an ullage space in the tank with prolonged contact with the wine causing its absorption/oxidation. Oxygen uptake from the air headspace over the wine due to differences in the partial pressure of O2 can be rapid, up to 1.5 mL of O2 per liter of wine in one hour and 100 cm2 of surface area1 and up to saturation after 4 hours.

Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Investigating the Ancient Egyptian wines: The wine jars database

In Ancient Egypt, wine was a luxury product consumed mainly by the upper classes and the royal family and offered to gods in daily religious rituals in the temples.
Since the Predynastic (4000-3100 BC) period, wine jars were placed in tombs as funerary offerings. From the Old Kingdom (2680-2160 BC) to the Greco-Roman (332 BC-395 AD) period, viticulture and winemaking scenes were depicted on the private tombs’ walls. During the New Kingdom (1539-1075 BC), wine jars were inscribed to indicate: vintage year, product, quality, provenance, property and winemaker’s name and title.