terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Abstract

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis  mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum). A total of 43 different VOCs were detected in both varieties by gas chromatography coupled to mass spectrometry (SPME GC-MS). The quantitative analyses revealed that leaves of CS had higher concentration of VOCs than those of T, the effect of the mycorrhizal symbiosis on the total levels of VOCs being non-significant. The predominant VOCs were those synthetized by the LOX/HPL pathway, followed by those coming from MVA/MEP pathway and, in a lesser extent, from SK pathway. Pentyl leaf volatiles (PLV), green leaf volatiles (GLV) and VOCs involved in the resistance of grapevine against Plasmopara viticola were more abundant in CS than in T, especially when plants were associated with AMF. The volatilome profiles obtained revealed that some minor VOCs were only present in one of the two tested grapevine varieties. Mycorrhizal association increased the relative abundance (%) of VOCs derived from the SK pathway in T and that of GLV in CS.

Acknowledgements: To A. Urdiain, M. Oyarzun & H. Santesteban for technical support, Asociación de Amigos (UNAV) for D. Kozikova’s scholarship, Bioera SL for AMF, Ministerio de Ciencia e Innovación (Gobierno España) funded the research (Ref. PID2020-118337RB-IOO)

References:

1)  Velásquez A. et al. (2020) The arbuscular mycorrhizal fungus Funneliformis mosseae induces changes and increases the concentration of volatile organic compounds in Vitis vinifera cv. Sangiovese leaf tissue. Plant Physiol. Biochem. 155: 437-443, DOI 10.1016/j.plaphy.2020.06.048

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Goicoechea Nieves1*, Kozikova Daria1, Pascual Inmaculada1

1Environmental Biology department- Group of Stress Physiology in Plants. School of Sciences-BIOMA, University of Navarra. Irunlarrea 1, 31008-Pamplona, Spain

Contact the author*

Keywords

Cabernet Sauvignon, leaves, mycorrhizal symbiosis, Tempranillo, volatile organic compounds

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].

The weak role of organic mulches in shaping bacterial communities in grapevine

The interest in sustainable and ecologic agricultural practices in grapevine has grown significantly in recent years in the context of ecological transition. Organic mulches are treatments that support the circular economy and positively affect the soil and the plant. They are an alternative to herbicides and other conventional practices since they may influence soil moisture, erosion, structure and weed control. However, their effects on the soil and must microbiota remain unknown.

Green pruning of shoots to force new sprouting of buds, in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

The context of climate crisis leads to the acceleration of technological ripening of grapes, with unsuitable loss of acidity, so various vineyard management alternatives are being considered to delay the grape ripening. The delay of the vegetative cycle towards a period of milder temperatures affects ripening, but vine behavior can vary according to the area, conduction, watering, variety, etc. A work is proposed to know the response to the green pruning of shoots, executed in fruit set and in pea size, in cv. Verdejo.

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].