terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Genetic variation among wild grapes native to Japan

Genetic variation among wild grapes native to Japan

Abstract

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan.  A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan. Hence, the present study aimed to assess the ploidy level and genetic variability among the wild grapes native to Japan. A total of seven wild grape, in addition to two hybrids (Vitis vinifera and Vitis ficifolia (Japanese wild grape)) and one each Vitis vinifera and Vitis labruscana cultivars, were evaluated using 14 random amplified polymorphic DNA (RAPD) markers. The RAPD markers have been reported to be highly variable both within and between species. The RAPD markers were selected simply because of their uniqueness, simplicity and discriminatory capability. Likewise, ploidy level was determined by flow cytometric methods. The flow cytometric analysis showed no variation among wild grapes and their hybrids. All grapes were diploid irrespective of origin and diverse morphological, phenological and berry characteristics. The 14 RAPD primers amplified 120 reproducible bands among 11 grape accessions. Of the 120 total bands, 114 were polymorphic and 6 were monomorphic. The unweighted pair group method of arithmetic averages (UPGMA) using 120 RAPD bands from 14 selected primers clearly separated the wild grapes into distinct groups. The affinity of hybrid grapes with their parents proved true hybridity.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Puspa Raj Poudel1,2*, Ikuo Kataoka3, Kenji Beppu3 and Ryosuke Mochioka2

1Tribhuvan University, Institute of Agriculture and Animal Science, Paklihawa Campus, Siddharthanagar1, Rupandehi, Nepal
2University Farm, Faculty of Agriculture, Kagawa University, Showa, Sanuki, Kagawa 769-2304, Japan
3Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan

Contact the author*

Keywords

wild grapes, RAPD, ploidy level, Vitis ficifolia

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system.