terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Genetic variation among wild grapes native to Japan

Genetic variation among wild grapes native to Japan

Abstract

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan.  A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan. Hence, the present study aimed to assess the ploidy level and genetic variability among the wild grapes native to Japan. A total of seven wild grape, in addition to two hybrids (Vitis vinifera and Vitis ficifolia (Japanese wild grape)) and one each Vitis vinifera and Vitis labruscana cultivars, were evaluated using 14 random amplified polymorphic DNA (RAPD) markers. The RAPD markers have been reported to be highly variable both within and between species. The RAPD markers were selected simply because of their uniqueness, simplicity and discriminatory capability. Likewise, ploidy level was determined by flow cytometric methods. The flow cytometric analysis showed no variation among wild grapes and their hybrids. All grapes were diploid irrespective of origin and diverse morphological, phenological and berry characteristics. The 14 RAPD primers amplified 120 reproducible bands among 11 grape accessions. Of the 120 total bands, 114 were polymorphic and 6 were monomorphic. The unweighted pair group method of arithmetic averages (UPGMA) using 120 RAPD bands from 14 selected primers clearly separated the wild grapes into distinct groups. The affinity of hybrid grapes with their parents proved true hybridity.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Puspa Raj Poudel1,2*, Ikuo Kataoka3, Kenji Beppu3 and Ryosuke Mochioka2

1Tribhuvan University, Institute of Agriculture and Animal Science, Paklihawa Campus, Siddharthanagar1, Rupandehi, Nepal
2University Farm, Faculty of Agriculture, Kagawa University, Showa, Sanuki, Kagawa 769-2304, Japan
3Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan

Contact the author*

Keywords

wild grapes, RAPD, ploidy level, Vitis ficifolia

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Teinturier grapes: Valorization as a source of high-value compounds for the Chilean food industry

The agri-food industry is constantly searching for ingredients of high functional value, healthy and of natural origin. One species of particular interest is Vitis vinifera, due to its recognized antioxidant potential. Among the grape varieties, one group possesses these antioxidant compounds not only in the skin, but also in its pulp: Teinturier. The red grape has traditionally been used for color correction purposes in winemaking, however, its high antioxidant content transforms it into a raw material of high potential for new formulations of ingredients and foods for the health and wellness market.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

Climate change is expected to provoke an increase in the frequency and intensity of drought events and water scarcity that will have detrimental effects on photosynthesis and plant yield. To sustain an appropriate plant yield under sub-optimal conditions, a common practice is the application of high amounts of fertilizers with negative environmental consequences. The present study aims at evaluating the interplay between water and nutrient availability, namely nitrogen (N) and potassium (K), in two grapevine cultivars with a different sensitivity to water shortage stress. Two-year-old Vitis Vinifera cv. Cabernet Sauvignon and Grenache grapevine plants grafted on SO4 rootstock have been transferred in pots under semi-environmental conditions.

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.