terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Genetic variation among wild grapes native to Japan

Genetic variation among wild grapes native to Japan

Abstract

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan.  A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan. Hence, the present study aimed to assess the ploidy level and genetic variability among the wild grapes native to Japan. A total of seven wild grape, in addition to two hybrids (Vitis vinifera and Vitis ficifolia (Japanese wild grape)) and one each Vitis vinifera and Vitis labruscana cultivars, were evaluated using 14 random amplified polymorphic DNA (RAPD) markers. The RAPD markers have been reported to be highly variable both within and between species. The RAPD markers were selected simply because of their uniqueness, simplicity and discriminatory capability. Likewise, ploidy level was determined by flow cytometric methods. The flow cytometric analysis showed no variation among wild grapes and their hybrids. All grapes were diploid irrespective of origin and diverse morphological, phenological and berry characteristics. The 14 RAPD primers amplified 120 reproducible bands among 11 grape accessions. Of the 120 total bands, 114 were polymorphic and 6 were monomorphic. The unweighted pair group method of arithmetic averages (UPGMA) using 120 RAPD bands from 14 selected primers clearly separated the wild grapes into distinct groups. The affinity of hybrid grapes with their parents proved true hybridity.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Puspa Raj Poudel1,2*, Ikuo Kataoka3, Kenji Beppu3 and Ryosuke Mochioka2

1Tribhuvan University, Institute of Agriculture and Animal Science, Paklihawa Campus, Siddharthanagar1, Rupandehi, Nepal
2University Farm, Faculty of Agriculture, Kagawa University, Showa, Sanuki, Kagawa 769-2304, Japan
3Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan

Contact the author*

Keywords

wild grapes, RAPD, ploidy level, Vitis ficifolia

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

Unraveling the complexity of high-temperature tolerance by characterizing key players of heat stress response in grapevine

Grapevine (Vitis spp.) is greatly influenced by climatic conditions and its economic value is therefore directly linked to environmental factors. Among these factors, temperature plays a critical role in vine phenology and fruit composition. In such conditions, elucidating the mechanisms employed by the vine to cope with heat waves becomes urgent. For the past few years, our research team has been producing molecular and metabolic data to highlight the molecular players involved in the response of the vine and the fruit to high temperatures [1]. Some of these temperature-sensitive genes are currently undergoing characterization using transgenesis approaches coupled or not with genome editing, taking advantage of the Microvine genotype [2].