terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

Abstract

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf. In rainfed conditions, the new genotypes presented lower reductions in all physiological and vegetative growth parameters, compared to those observed in ‘Monastrell’ (the reference variety in the area). Regarding stem water potentialS), ‘Monastrell’ showed the greatest reduction (19%) and MS104 the lowest (1%). The parental varieties showed a greater reduction in stomatal conductance (gS) and photosynthetic activity (AN) values than the crossbreeds. Regarding vegetative growth, ‘Monastrell’ showed the greatest reductions, both for stem size and pruning weight (43% and 69%, respectively); while MC16 presents the lowest (4% and 13%, respectively). On the other hand, variations of chlorophyll and total soluble sugars content in the leaf were observed between genotypes. Nevertheless, only the average chlorophyll content was significantly affected by the irrigation treatment. The analysis of the new genotypes during successive years will allow us to identify if some of the crosses obtained could adapt better than ‘Monastrell’ to the semi-arid conditions of Murcia.

Acknowledgements: The authors thank Carlos V. Padilla, Eliseo Salmerón and Miguel Alcaraz for crop health control. This work was financed by the Ministerio de Ciencia e Innovación via project PID2020-119263RR-100.

References:

1)  Ruiz-García, et al. (2018) Nuevas variedades de vid obtenidas en la Región de Murcia. Actas Hortic., 80, 226–229.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Diego José Fernández-López1*, Josefa María Navarro2*, Adrián Yepes-Hita1, Eva María Arques2, José Antonio Martínez-Jiménez1, Pascual Romero2, Leonor Ruiz-García1

1 Molecular Genetic Improvement Team, Instituto Murciano de Investigación y Desarollo Agrario y Medi-oambiental (IMIDA), C/ Mayor s/n, La Alberca, 30150 Murcia, Spain
2 Irrigation and Stress Physiology Team, Instituto Murciano de Investigación y Desarollo Agrario y Medi-oambiental (IMIDA), C/ Mayor s/n, La Alberca, 30150 Murcia, Spain

Contact the author*

Keywords

crossbreeding, drought, water potential, gas exchange, chlorophyll, sugars

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

Conventional and alternative pest management strategies: a comparative proteomic study on musts

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases.

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture.

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.