terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Abstract

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake. Rooted woody cuttings of the rootstocks Fercal (V. berlandieri x V. vinifera) and Couderc 3309 (V. riparia x V. rupestris) were grown within a hydroponic system (Kick-Brauckmann, 7.5 L pots) filled with modified half-strength Hoagland solution under semi-controlled climatic glasshouse conditions in 2021. Plants were grown with or without FeNa(III)- EDTA, and with two  NO3/NH4+ ratios (100:0; 50:50). The results could differentiate iron deficiency effects, nitrogen form effects and rootstock effects. Interveinal chlorosis of young leaves appeared earlier on 3309C from the second week of treatment with NO3/NH4+ (100:0)/-Fe, while Fercal leaves showed less severe symptoms after four weeks of treatment, corresponding with chlorophyll concentrations lower by 75% for 3309C and 57% for Fercal. The treatment NO3/NH4+(50:50)/+Fe had significantly higher biomass compared with NO3/NH4+(100:0)/+Fe in both rootstocks while results with NO3/NH4+(100:0)/-Fe were lowest. Ferric chelate reductase (FCR) activity was specifically increased under iron deficiency in Fercal with both N combinations, whereas 3309C showed an increase in FCR activity just with NO3/NH4+ (50:50). These first results indicate that rootstocks differ in their preference on both the physiological and molecular level depending on the nitrogen form and in interaction with iron deficiency stress.

References:

1) Nasar, J. et al. (2022). Nitrogen fertilization coupled with iron foliar application improves the photosynthetic characteristics, photosynthetic nitrogen use efficiency, and the related enzymes of maize crops under different planting patterns. Front. Plant Sci. 13, 988055.
2) Yin, H. et al. (2020). Effect of ammonium and nitrate supplies on nitrogen and sucrose metabolism of cabernet sauvignon (Vitis vinifera cv.). J. Sci. Food Agric.100(14), 5239–5250. doi: 10.1002/jsfa.10574.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Khalil, Sarhan1*; Griesser, Michaela1; Tomasi, Nicola2; Zanin, Laura2; Lodovici, Arianna2; Forneck, Astrid1

University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Korad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
2 University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze, 206 – 33100 – Udine, Italy.

Contact the author*

Keywords

grapevine, rootstock, nitrate, ammonium, iron, ferric chelate reductase

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].

Qualitative and productive characterization of a minority variety: ‘Branco lexítimo’ in DO Ribeira Sacra (Spain)

The actual climate changes, together with the strong regulation of the European Union and Spanish government, in search of sustainable viticulture, have forced the recovery of minority varieties, expanding the range of grape varieties, as well as the possible development of wines with unique profiles. In the Ribeira Sacra DO (Spain), a comparative study of the agronomic and qualitative behavior of the ‘Branco lexítimo’ variety has been carried out, compared to the majority white variety in the DO: ‘Godello’, located in the same study plot, with identic soil and climatic conditions. The study contemplated the analysis of phenology and leaf water potential, as well as the productive results and the analysis of the must quality, during four seasons: 2018 – 2021.