terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Abstract

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake. Rooted woody cuttings of the rootstocks Fercal (V. berlandieri x V. vinifera) and Couderc 3309 (V. riparia x V. rupestris) were grown within a hydroponic system (Kick-Brauckmann, 7.5 L pots) filled with modified half-strength Hoagland solution under semi-controlled climatic glasshouse conditions in 2021. Plants were grown with or without FeNa(III)- EDTA, and with two  NO3/NH4+ ratios (100:0; 50:50). The results could differentiate iron deficiency effects, nitrogen form effects and rootstock effects. Interveinal chlorosis of young leaves appeared earlier on 3309C from the second week of treatment with NO3/NH4+ (100:0)/-Fe, while Fercal leaves showed less severe symptoms after four weeks of treatment, corresponding with chlorophyll concentrations lower by 75% for 3309C and 57% for Fercal. The treatment NO3/NH4+(50:50)/+Fe had significantly higher biomass compared with NO3/NH4+(100:0)/+Fe in both rootstocks while results with NO3/NH4+(100:0)/-Fe were lowest. Ferric chelate reductase (FCR) activity was specifically increased under iron deficiency in Fercal with both N combinations, whereas 3309C showed an increase in FCR activity just with NO3/NH4+ (50:50). These first results indicate that rootstocks differ in their preference on both the physiological and molecular level depending on the nitrogen form and in interaction with iron deficiency stress.

References:

1) Nasar, J. et al. (2022). Nitrogen fertilization coupled with iron foliar application improves the photosynthetic characteristics, photosynthetic nitrogen use efficiency, and the related enzymes of maize crops under different planting patterns. Front. Plant Sci. 13, 988055.
2) Yin, H. et al. (2020). Effect of ammonium and nitrate supplies on nitrogen and sucrose metabolism of cabernet sauvignon (Vitis vinifera cv.). J. Sci. Food Agric.100(14), 5239–5250. doi: 10.1002/jsfa.10574.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Khalil, Sarhan1*; Griesser, Michaela1; Tomasi, Nicola2; Zanin, Laura2; Lodovici, Arianna2; Forneck, Astrid1

University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Korad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
2 University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze, 206 – 33100 – Udine, Italy.

Contact the author*

Keywords

grapevine, rootstock, nitrate, ammonium, iron, ferric chelate reductase

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5].

The weak role of organic mulches in shaping bacterial communities in grapevine

The interest in sustainable and ecologic agricultural practices in grapevine has grown significantly in recent years in the context of ecological transition. Organic mulches are treatments that support the circular economy and positively affect the soil and the plant. They are an alternative to herbicides and other conventional practices since they may influence soil moisture, erosion, structure and weed control. However, their effects on the soil and must microbiota remain unknown.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.