terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Abstract

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake. Rooted woody cuttings of the rootstocks Fercal (V. berlandieri x V. vinifera) and Couderc 3309 (V. riparia x V. rupestris) were grown within a hydroponic system (Kick-Brauckmann, 7.5 L pots) filled with modified half-strength Hoagland solution under semi-controlled climatic glasshouse conditions in 2021. Plants were grown with or without FeNa(III)- EDTA, and with two  NO3/NH4+ ratios (100:0; 50:50). The results could differentiate iron deficiency effects, nitrogen form effects and rootstock effects. Interveinal chlorosis of young leaves appeared earlier on 3309C from the second week of treatment with NO3/NH4+ (100:0)/-Fe, while Fercal leaves showed less severe symptoms after four weeks of treatment, corresponding with chlorophyll concentrations lower by 75% for 3309C and 57% for Fercal. The treatment NO3/NH4+(50:50)/+Fe had significantly higher biomass compared with NO3/NH4+(100:0)/+Fe in both rootstocks while results with NO3/NH4+(100:0)/-Fe were lowest. Ferric chelate reductase (FCR) activity was specifically increased under iron deficiency in Fercal with both N combinations, whereas 3309C showed an increase in FCR activity just with NO3/NH4+ (50:50). These first results indicate that rootstocks differ in their preference on both the physiological and molecular level depending on the nitrogen form and in interaction with iron deficiency stress.

References:

1) Nasar, J. et al. (2022). Nitrogen fertilization coupled with iron foliar application improves the photosynthetic characteristics, photosynthetic nitrogen use efficiency, and the related enzymes of maize crops under different planting patterns. Front. Plant Sci. 13, 988055.
2) Yin, H. et al. (2020). Effect of ammonium and nitrate supplies on nitrogen and sucrose metabolism of cabernet sauvignon (Vitis vinifera cv.). J. Sci. Food Agric.100(14), 5239–5250. doi: 10.1002/jsfa.10574.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Khalil, Sarhan1*; Griesser, Michaela1; Tomasi, Nicola2; Zanin, Laura2; Lodovici, Arianna2; Forneck, Astrid1

University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Korad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
2 University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze, 206 – 33100 – Udine, Italy.

Contact the author*

Keywords

grapevine, rootstock, nitrate, ammonium, iron, ferric chelate reductase

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Distribution and sensory impact of new oak wood-derived compounds in wines

Despite the numerous research studies carried out in recent years, the study of wine aroma remains of great interest due to its complexity. Wine maturation in oak barrels is described as an important step in the production of quality wines. In fact, oak wood develops several aromatic nuances through its toasting which can be released into the wine. A great deal of work has been performed in order to identify the wood-derived volatile compounds that contribute to wine aroma (e.g., whisky-lactone, maltol, eugenol, guaiacol, vanillin).

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.