terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Abstract

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake. Rooted woody cuttings of the rootstocks Fercal (V. berlandieri x V. vinifera) and Couderc 3309 (V. riparia x V. rupestris) were grown within a hydroponic system (Kick-Brauckmann, 7.5 L pots) filled with modified half-strength Hoagland solution under semi-controlled climatic glasshouse conditions in 2021. Plants were grown with or without FeNa(III)- EDTA, and with two  NO3/NH4+ ratios (100:0; 50:50). The results could differentiate iron deficiency effects, nitrogen form effects and rootstock effects. Interveinal chlorosis of young leaves appeared earlier on 3309C from the second week of treatment with NO3/NH4+ (100:0)/-Fe, while Fercal leaves showed less severe symptoms after four weeks of treatment, corresponding with chlorophyll concentrations lower by 75% for 3309C and 57% for Fercal. The treatment NO3/NH4+(50:50)/+Fe had significantly higher biomass compared with NO3/NH4+(100:0)/+Fe in both rootstocks while results with NO3/NH4+(100:0)/-Fe were lowest. Ferric chelate reductase (FCR) activity was specifically increased under iron deficiency in Fercal with both N combinations, whereas 3309C showed an increase in FCR activity just with NO3/NH4+ (50:50). These first results indicate that rootstocks differ in their preference on both the physiological and molecular level depending on the nitrogen form and in interaction with iron deficiency stress.

References:

1) Nasar, J. et al. (2022). Nitrogen fertilization coupled with iron foliar application improves the photosynthetic characteristics, photosynthetic nitrogen use efficiency, and the related enzymes of maize crops under different planting patterns. Front. Plant Sci. 13, 988055.
2) Yin, H. et al. (2020). Effect of ammonium and nitrate supplies on nitrogen and sucrose metabolism of cabernet sauvignon (Vitis vinifera cv.). J. Sci. Food Agric.100(14), 5239–5250. doi: 10.1002/jsfa.10574.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Khalil, Sarhan1*; Griesser, Michaela1; Tomasi, Nicola2; Zanin, Laura2; Lodovici, Arianna2; Forneck, Astrid1

University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Korad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
2 University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze, 206 – 33100 – Udine, Italy.

Contact the author*

Keywords

grapevine, rootstock, nitrate, ammonium, iron, ferric chelate reductase

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2 reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage.

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.

Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

A large population of vines of the Mandón minority red variety (synonymous with Garró) has been located in old vineyards of the D.O. Arribes (Zamora and Salamanca) to conserve and recover this minority variety. The wines made with this variety are characterized by their good structure and color, interesting harmony, an excellently low pH, with high acidity, as well as complex aromas of blue fruits and a marked and expressive minerality.

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].