terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Abstract

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake. Rooted woody cuttings of the rootstocks Fercal (V. berlandieri x V. vinifera) and Couderc 3309 (V. riparia x V. rupestris) were grown within a hydroponic system (Kick-Brauckmann, 7.5 L pots) filled with modified half-strength Hoagland solution under semi-controlled climatic glasshouse conditions in 2021. Plants were grown with or without FeNa(III)- EDTA, and with two  NO3/NH4+ ratios (100:0; 50:50). The results could differentiate iron deficiency effects, nitrogen form effects and rootstock effects. Interveinal chlorosis of young leaves appeared earlier on 3309C from the second week of treatment with NO3/NH4+ (100:0)/-Fe, while Fercal leaves showed less severe symptoms after four weeks of treatment, corresponding with chlorophyll concentrations lower by 75% for 3309C and 57% for Fercal. The treatment NO3/NH4+(50:50)/+Fe had significantly higher biomass compared with NO3/NH4+(100:0)/+Fe in both rootstocks while results with NO3/NH4+(100:0)/-Fe were lowest. Ferric chelate reductase (FCR) activity was specifically increased under iron deficiency in Fercal with both N combinations, whereas 3309C showed an increase in FCR activity just with NO3/NH4+ (50:50). These first results indicate that rootstocks differ in their preference on both the physiological and molecular level depending on the nitrogen form and in interaction with iron deficiency stress.

References:

1) Nasar, J. et al. (2022). Nitrogen fertilization coupled with iron foliar application improves the photosynthetic characteristics, photosynthetic nitrogen use efficiency, and the related enzymes of maize crops under different planting patterns. Front. Plant Sci. 13, 988055.
2) Yin, H. et al. (2020). Effect of ammonium and nitrate supplies on nitrogen and sucrose metabolism of cabernet sauvignon (Vitis vinifera cv.). J. Sci. Food Agric.100(14), 5239–5250. doi: 10.1002/jsfa.10574.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Khalil, Sarhan1*; Griesser, Michaela1; Tomasi, Nicola2; Zanin, Laura2; Lodovici, Arianna2; Forneck, Astrid1

University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Korad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
2 University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze, 206 – 33100 – Udine, Italy.

Contact the author*

Keywords

grapevine, rootstock, nitrate, ammonium, iron, ferric chelate reductase

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Phenolic composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Grape and wine phenolic compounds have been shown to be highly related to both wine quality (color, flavor, and taste) and health-promoting properties (antioxidant and cardioprotective, among others). The aim of this work was to evaluate and compare the phenolic contents of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain vintage 2022. In addition, the phenolic profiles of the Portuguese wines from three vintages (2020, 2021, 2022) was compared.

Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Based on historical vine cultivation, the recent development of wine production in Drama wine region (Greece) has led to vine cultivation expansion of white and red varieties. The current cultivation of 500 ha of vineyards is expected to increase in the coming years. Natural terroir units (NTU) have been designed recently to support the production of high quality wines in the region [1]. The aim of this work is to evaluate the relevancy of the proposed NTUs regarding their suitability to produce wines of specific sensorial identity, and to provide guidelines for correct site selection for the expanding wine industry of the region.

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2 reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage.

Genetic variation among wild grapes native to Japan

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan. A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan.

Prediction of aromatic attributes of red wines from its colour properties 

Wine perception is a multisensory experience that makes use of the sight, smell, and taste senses. When wine is sensorially assessed, the stimulus received generates multiple signals that tasters convert into organoleptic descriptors. Colour is commonly the first attribute evaluated during wine tasting. Moreover, the colour properties provide the taster with a priori information of the wine’s aroma. This preconceived perception is later confirmed or denied during the aroma evaluation.