terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Combined abiotic-biotic plant stresses on the roots of grapevine

Combined abiotic-biotic plant stresses on the roots of grapevine

Abstract

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism. This experiment analyzed the performance of two rootstock genotypes (Teleki 5C and Fercal) with different lime and phylloxera tolerance characteristics by analyzing the physiological and biochemical response to combined and singles stressors. A standardized pot experiment was conducted with grafted vines (both rootstocks with Chardonnay as scion) in 2022. Vines were planted into peat substrate in 7 L pots and fertilized with half strength Hoagland solution. The carbonate stress was applied by adding 10 mM KHCO3 to the nutrient solution. Vine physiology was frequently measured and samples were collected to analyze primary metabolites. We hypothesize that the combined lime-phylloxera-stress affects Fercal tolerance to lime stress by manipulating the primary metabolism in root tips. Our results showed, non-structural carbohydrates and organic acids in roots after combined stresses were reduced as compared to single stresses in Fercal suggesting a direct influence on stress tolerance. This pilot study shows, that biotic interactions could influence rootstocks traits with potential effects on vineyards in the frame of climate change.

References:

  1. Savi T et al. (2019) Gas exchange, biomass and non-structural carbohydrates dynamics in vines under combined drought and biotic stress. BMC Plant Biol 19:408, https://doi.org/10.1186/s12870-019-2017-2

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Juliane Bußkamp1*, Sarhan Khalil1, Astrid Forneck1, Michaela Griesser1*

1University of Natural Resources and Life Sciences Vienna, Department of Crop Sciences, Institute of Viticulture and Pomology, Konrad-Lorenz Straße 24, 3430 Tulln, Austria

Contact the author*

Keywords

phylloxera, iron deficiency, combined stress, rootstocks

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.

Irrigation frequency in four grapevine red varieties in Spain. Effect on must volatile composition

The irrigation water management in the vineyard is a crucial aspect to obtain sustainable quality production over time. Previous studies have set the water requirements to be applied in the vineyard at 30 % of the reference evapotranspiration (ET0), although there are no studies that settle the effects of the frequency of irrigation application on red varieties in Spain. The present study contemplates the application of deficit irrigation (30 % ET0) applying a weekly dose in a single irrigation (T07) or in two irrigation events (T03) per week. The study has been carried out in 2021-2022 with four red varieties in different Spanish wine regions: Garnacha Tinta (Badajoz), Tempranillo (Valladolid), Syrah (Albacete) and Mencía (Lugo). The effects of irrigation frequency on must volatile composition have been evaluated through GC-MS.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).