terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Combined abiotic-biotic plant stresses on the roots of grapevine

Combined abiotic-biotic plant stresses on the roots of grapevine

Abstract

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism. This experiment analyzed the performance of two rootstock genotypes (Teleki 5C and Fercal) with different lime and phylloxera tolerance characteristics by analyzing the physiological and biochemical response to combined and singles stressors. A standardized pot experiment was conducted with grafted vines (both rootstocks with Chardonnay as scion) in 2022. Vines were planted into peat substrate in 7 L pots and fertilized with half strength Hoagland solution. The carbonate stress was applied by adding 10 mM KHCO3 to the nutrient solution. Vine physiology was frequently measured and samples were collected to analyze primary metabolites. We hypothesize that the combined lime-phylloxera-stress affects Fercal tolerance to lime stress by manipulating the primary metabolism in root tips. Our results showed, non-structural carbohydrates and organic acids in roots after combined stresses were reduced as compared to single stresses in Fercal suggesting a direct influence on stress tolerance. This pilot study shows, that biotic interactions could influence rootstocks traits with potential effects on vineyards in the frame of climate change.

References:

  1. Savi T et al. (2019) Gas exchange, biomass and non-structural carbohydrates dynamics in vines under combined drought and biotic stress. BMC Plant Biol 19:408, https://doi.org/10.1186/s12870-019-2017-2

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Juliane Bußkamp1*, Sarhan Khalil1, Astrid Forneck1, Michaela Griesser1*

1University of Natural Resources and Life Sciences Vienna, Department of Crop Sciences, Institute of Viticulture and Pomology, Konrad-Lorenz Straße 24, 3430 Tulln, Austria

Contact the author*

Keywords

phylloxera, iron deficiency, combined stress, rootstocks

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.

Inert gases persistence in wine storage tank blanketing

It is common to find tanks in the winery with wine below their capacity due to wine transfers between tanks of different capacities or the interruption of operations for periods of a few days. This situation implies the existence of an ullage space in the tank with prolonged contact with the wine causing its absorption/oxidation. Oxygen uptake from the air headspace over the wine due to differences in the partial pressure of O2 can be rapid, up to 1.5 mL of O2 per liter of wine in one hour and 100 cm2 of surface area1 and up to saturation after 4 hours.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.